libevent源码深度剖析七
libevent源码深度剖析七
——事件主循环
张亮
现在我们已经初步了解了libevent的Reactor组件——event_base和事件管理框架,接下来就是libevent事件处理的中心部分
——事件主循环,根据系统提供的事件多路分发机制执行事件循环,对已注册的就绪事件,调用注册事件的回调函数来处理事件。
1 阶段性的胜利
Libevent将I/O事件、定时器和信号事件处理很好的结合到了一起,本节也会介绍libevent是如何做到这一点的。
在看完本节的内容后,读者应该会对Libevent的基本框架:事件管理和主循环有比较清晰的认识了,并能够把libevent的事件控制流程清晰的串通起来,剩下的就是一些细节的内容了。
2 事件处理主循环
Libevent的事件主循环主要是通过event_base_loop ()函数完成的,其主要操作如下面的流程图所示,event_base_loop所作的就是持续执行下面的循环。
清楚了event_base_loop所作的主要操作,就可以对比源代码看个究竟了,代码结构还是相当清晰的。
- int event_base_loop(struct event_base *base, int flags)
- {
- const struct eventop *evsel = base->evsel;
- void *evbase = base->evbase;
- struct timeval tv;
- struct timeval *tv_p;
- int res, done;
- // 清空时间缓存
- base->tv_cache.tv_sec = 0;
- // evsignal_base是全局变量,在处理signal时,用于指名signal所属的event_base实例
- if (base->sig.ev_signal_added)
- evsignal_base = base;
- done = 0;
- while (!done) { // 事件主循环
- // 查看是否需要跳出循环,程序可以调用event_loopexit_cb()设置event_gotterm标记
- // 调用event_base_loopbreak()设置event_break标记
- if (base->event_gotterm) {
- base->event_gotterm = 0;
- break;
- }
- if (base->event_break) {
- base->event_break = 0;
- break;
- }
- // 校正系统时间,如果系统使用的是非MONOTONIC时间,用户可能会向后调整了系统时间
- // 在timeout_correct函数里,比较last wait time和当前时间,如果当前时间< last wait time
- // 表明时间有问题,这是需要更新timer_heap中所有定时事件的超时时间。
- timeout_correct(base, &tv);
- // 根据timer heap中事件的最小超时时间,计算系统I/O demultiplexer的最大等待时间
- tv_p = &tv;
- if (!base->event_count_active && !(flags & EVLOOP_NONBLOCK)) {
- timeout_next(base, &tv_p);
- } else {
- // 依然有未处理的就绪时间,就让I/O demultiplexer立即返回,不必等待
- // 下面会提到,在libevent中,低优先级的就绪事件可能不能立即被处理
- evutil_timerclear(&tv);
- }
- // 如果当前没有注册事件,就退出
- if (!event_haveevents(base)) {
- event_debug(("%s: no events registered.", __func__));
- return (1);
- }
- // 更新last wait time,并清空time cache
- gettime(base, &base->event_tv);
- base->tv_cache.tv_sec = 0;
- // 调用系统I/O demultiplexer等待就绪I/O events,可能是epoll_wait,或者select等;
- // 在evsel->dispatch()中,会把就绪signal event、I/O event插入到激活链表中
- res = evsel->dispatch(base, evbase, tv_p);
- if (res == -1)
- return (-1);
- // 将time cache赋值为当前系统时间
- gettime(base, &base->tv_cache);
- // 检查heap中的timer events,将就绪的timer event从heap上删除,并插入到激活链表中
- timeout_process(base);
- // 调用event_process_active()处理激活链表中的就绪event,调用其回调函数执行事件处理
- // 该函数会寻找最高优先级(priority值越小优先级越高)的激活事件链表,
- // 然后处理链表中的所有就绪事件;
- // 因此低优先级的就绪事件可能得不到及时处理;
- if (base->event_count_active) {
- event_process_active(base);
- if (!base->event_count_active && (flags & EVLOOP_ONCE))
- done = 1;
- } else if (flags & EVLOOP_NONBLOCK)
- done = 1;
- }
- // 循环结束,清空时间缓存
- base->tv_cache.tv_sec = 0;
- event_debug(("%s: asked to terminate loop.", __func__));
- return (0);
- }
3 I/O和Timer事件的统一
Libevent将Timer和Signal事件都统一到了系统的I/O 的demultiplex机制中了,相信读者从上面的流程和代码中也能窥出一斑了,下面就再啰嗦一次了。
首先将Timer事件融合到系统I/O多路复用机制中,还是相当清晰的,因为系统的I/O机制像select()和epoll_wait()都允许程序制
定一个最大等待时间(也称为最大超时时间)timeout,即使没有I/O事件发生,它们也保证能在timeout时间内返回。
那么根据所有Timer事件的最小超时时间来设置系统I/O的timeout时间;当系统I/O返回时,再激活所有就绪的Timer事件就可以了,这样就能将Timer事件完美的融合到系统的I/O机制中了。
这是在Reactor和Proactor模式(主动器模式,比如Windows上的IOCP)中处理Timer事件的经典方法了,ACE采用的也是这种方法,大家可以参考POSA vol2书中的Reactor模式一节。
堆是一种经典的数据结构,向堆中插入、删除元素时间复杂度都是O(lgN),N为堆中元素的个数,而获取最小key值(小根堆)的复杂度为O(1);因此变成了管理Timer事件的绝佳人选(当然是非唯一的),libevent就是采用的堆结构。
4 I/O和Signal事件的统一
Signal是异步事件的经典事例,将Signal事件统一到系统的I/O多路复用中就不像Timer事件那么自然了,Signal事件的出现对于进程来
讲是完全随机的,进程不能只是测试一个变量来判别是否发生了一个信号,而是必须告诉内核“在此信号发生时,请执行如下的操作”。
如果当Signal发生时,并不立即调用event的callback函数处理信号,而是设法通知系统的I/O机制,让其返回,然后再统一和I/O事件以及Timer一起处理,不就可以了嘛。是的,这也是libevent中使用的方法。
问题的核心在于,当Signal发生时,如何通知系统的I/O多路复用机制,这里先买个小关子,放到信号处理一节再详细说明,我想读者肯定也能想出通知的方法,比如使用pipe。
5 小节
介绍了libevent的事件主循环,描述了libevent是如何处理就绪的I/O事件、定时器和信号事件,以及如何将它们无缝的融合到一起。
libevent源码深度剖析七的更多相关文章
- libevent 源码深度剖析十三
libevent 源码深度剖析十三 —— libevent 信号处理注意点 前面讲到了 libevent 实现多线程的方法,然而在多线程的环境中注册信号事件,还是有一些情况需要小心处理,那就是不能在多 ...
- libevent源码深度剖析十二
libevent源码深度剖析十二 ——让libevent支持多线程 张亮 Libevent本身不是多线程安全的,在多核的时代,如何能充分利用CPU的能力呢,这一节来说说如何在多线程环境中使用libev ...
- libevent源码深度剖析十一
libevent源码深度剖析十一 ——时间管理 张亮 为了支持定时器,Libevent必须和系统时间打交道,这一部分的内容也比较简单,主要涉及到时间的加减辅助函数.时间缓存.时间校正和定时器堆的时间值 ...
- libevent源码深度剖析十
libevent源码深度剖析十 ——支持I/O多路复用技术 张亮 Libevent的核心是事件驱动.同步非阻塞,为了达到这一目标,必须采用系统提供的I/O多路复用技术,而这些在Windows.Linu ...
- libevent源码深度剖析九
libevent源码深度剖析九 ——集成定时器事件 张亮 现在再来详细分析libevent中I/O事件和Timer事件的集成,与Signal相比,Timer事件的集成会直观和简单很多.Libevent ...
- libevent源码深度剖析八
libevent源码深度剖析八 ——集成信号处理 张亮 现在我们已经了解了libevent的基本框架:事件管理框架和事件主循环.上节提到了libevent中I/O事件和Signal以及Timer事件的 ...
- libevent源码深度剖析六
libevent源码深度剖析六 ——初见事件处理框架 张亮 前面已经对libevent的事件处理框架和event结构体做了描述,现在是时候剖析libevent对事件的详细处理流程了,本节将分析 lib ...
- libevent源码深度剖析五
libevent源码深度剖析五 ——libevent的核心:事件event 张亮 对事件处理流程有了高层的认识后,本节将详细介绍libevent的核心结构event,以及libevent对event的 ...
- libevent源码深度剖析四
libevent源码深度剖析四 ——libevent源代码文件组织 1 前言 详细分析源代码之前,如果能对其代码文件的基本结构有个大概的认识和分类,对于代码的分析将是大有裨益的.本节内容不多,我想并不 ...
随机推荐
- 卷积神经网络实战-----0001(移植卷积神经网络c++ to python or java)
1. https://github.com/174high/simple_cnn 自己fork的 2. https://github.com/can1357/simple_cnn 最初始的 3. ...
- 中 varStatus的属性简介
varStatus是<c:forEach>jstl循环标签的一个属性,varStatus属性.就拿varStatus="status"来说,事实上定义了一个status ...
- H5打字机特效
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- noip济南清北冲刺班DAY1
上午 T1 立方数 题目描述 LYK定义了一个数叫“立方数”,若一个数可以被写作是一个正整数的3次方,则这个数就是立方数,例如1,8,27就是最小的3个立方数. 现在给定一个数P,LYK想要知道这个数 ...
- django中的@login_required
转:http://www.cnblogs.com/ccorz/p/Django-zhong-loginrequired-yong-fa-jian-jie.html 1.网站开发时的登录需求: ===用 ...
- 从如何优化SQL入手,提高数据仓库的ETL效率
1 引言数据仓库建设中的ETL(Extract, Transform, Load)是数据抽取.转换和装载到模型的过程,整个过程基本是通过控制用SQL语句编写的存储过程和函数的方式来实现对 ...
- 【openCV学习笔记】在Mac上配置openCV步骤详解
(1)安装Homebrew:(需要Ruby) 注:因为snow leopard 以后已经自带Ruby了,所有可以不用自己安装Ruby. 看一下Homebrew的官网: http://mxcl.gith ...
- C# 判断程序是否已在运行
方法一: Process[] processes = rocess.GetProcessesByName("ConDemo"); ) { MessageBox.Show(" ...
- 【转】Jmeter在命令行运行技巧
For non-interactive testing, you may choose to run JMeter without the GUI. To do so, use the followi ...
- 求n对括号的合法组合
一道经典的面试题,求n对括号有多少种合法的组合. 抽象为2n个位置,每个位置可以有2种取值,总共有2^2n个组合,附加约束条件是要符合括号的语法,用来剪枝. 括号语法的合法性条件: 初始化左括号和右括 ...