PaddlePaddle 自动求导
自动求导
在 PaddlePaddle 中使用自动求导来计算导数。
要求:$ f(x)=\sin{x} $,绘制 \(f(x)\) 和 \(\dfrac{\mathrm{d}f(x)}{\mathrm{d}x}\) 的图像,不能使用 $ f'(x)=\cos{x}$
in[1]
import paddle
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
x = paddle.to_tensor(np.arange(-5, 5, 0.01), dtype="float32", stop_gradient=False)
y = paddle.sin(x)
paddle.autograd.backward(y)
dydx = x.grad
x, y, dydx
plt.plot(x, y)
plt.plot(x, dydx)
plt.show()
output[1]

API
backward
paddle.autograd.backward(tensors, grad_tensors=None, retain_graph=False)
计算给定的 Tensors 的反向梯度。
参数
- tensors (list[Tensor]) – 将要计算梯度的 Tensors 列表。Tensors 中不能包含有相同的 Tensor。
- grad_tensors (None|list[Tensor|None],可选) – tensors 的初始梯度值。如果非 None,必须和 tensors 有相同的长度,并且如果其中某一 Tensor 元素为 None,则该初始梯度值为填充 1.0 的默认值;如果是 None,所有的 tensors 的初始梯度值为填充 1.0 的默认值。默认值:None。
- retain_graph (bool,可选) – 如果为 False,反向计算图将被释放。如果在 backward()之后继续添加 OP,需要设置为 True,此时之前的反向计算图会保留。将其设置为 False 会更加节省内存。默认值:False。
返回
None
代码示例
import paddle
x = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32', stop_gradient=False)
y = paddle.to_tensor([[3, 2], [3, 4]], dtype='float32')
grad_tensor1 = paddle.to_tensor([[1,2], [2, 3]], dtype='float32')
grad_tensor2 = paddle.to_tensor([[1,1], [1, 1]], dtype='float32')
z1 = paddle.matmul(x, y)
z2 = paddle.matmul(x, y)
paddle.autograd.backward([z1, z2], [grad_tensor1, grad_tensor2], True)
print(x.grad)
#[[12. 18.]
# [17. 25.]]
x.clear_grad()
paddle.autograd.backward([z1, z2], [grad_tensor1, None], True)
print(x.grad)
#[[12. 18.]
# [17. 25.]]
x.clear_grad()
paddle.autograd.backward([z1, z2])
print(x.grad)
#[[10. 14.]
# [10. 14.]]
grad
paddle.grad(outputs, inputs, grad_outputs=None, retain_graph=None, create_graph=False, only_inputs=True, allow_unused=False, no_grad_vars=None)
对于每个 inputs,计算所有 outputs 相对于其的梯度和。
参数
- outputs (Tensor|list(Tensor)|tuple(Tensor)) – 用于计算梯度的图的输出变量,或多个输出变量构成的 list/tuple。
- inputs (Tensor|list(Tensor)|tuple(Tensor)) - 用于计算梯度的图的输入变量,或多个输入变量构成的 list/tuple。该 API 的每个返回值对应每个 inputs 的梯度。
- grad_outputs (Tensor|list(Tensor|None)|tuple(Tensor|None),可选) - outputs 变量梯度的初始值。若 grad_outputs 为 None,则 outputs 梯度的初始值均为全 1 的 Tensor。若 grad_outputs 不为 None,它必须与 outputs 的长度相等,此时,若 grad_outputs 的第 i 个元素为 None,则第 i 个 outputs 的梯度初始值为全 1 的 Tensor;若 grad_outputs 的第 i 个元素为 Tensor,则第 i 个 outputs 的梯度初始值为 grad_outputs 的第 i 个元素。默认值为 None。
- retain_graph (bool,可选) - 是否保留计算梯度的前向图。若值为 True,则前向图会保留,用户可对同一张图求两次反向。若值为 False,则前向图会释放。默认值为 None,表示值与 create_graph 相等。
- create_graph (bool,可选) - 是否创建计算过程中的反向图。若值为 True,则可支持计算高阶导数。若值为 False,则计算过程中的反向图会释放。默认值为 False。
- only_inputs (bool,可选) - 是否只计算 inputs 的梯度。若值为 False,则图中所有叶节点变量的梯度均会计算,并进行累加。若值为 True,则只会计算 inputs 的梯度。默认值为 True。only_inputs=False 功能正在开发中,目前尚不支持。
- allow_unused (bool,可选) - 决定当某些 inputs 变量不在计算图中时抛出错误还是返回 None。若某些 inputs 变量不在计算图中(即它们的梯度为 None),则当 allowed_unused=False 时会抛出错误,当 allow_unused=True 时会返回 None 作为这些变量的梯度。默认值为 False。
- no_grad_vars (Tensor|list(Tensor)|tuple(Tensor)|set(Tensor),可选) - 指明不需要计算梯度的变量。默认值为 None。
返回
tuple(Tensor),其长度等于 inputs 中的变量个数,且第 i 个返回的变量是所有 outputs 相对于第 i 个 inputs 的梯度之和。
代码示例 1
import paddle
def test_dygraph_grad(create_graph):
x = paddle.ones(shape=[1], dtype='float32')
x.stop_gradient = False
y = x * x
# Since y = x * x, dx = 2 * x
dx = paddle.grad(
outputs=[y],
inputs=[x],
create_graph=create_graph,
retain_graph=True)[0]
z = y + dx
# If create_graph = False, the gradient of dx
# would not be backpropagated. Therefore,
# z = x * x + dx, and x.gradient() = 2 * x = 2.0
# If create_graph = True, the gradient of dx
# would be backpropagated. Therefore,
# z = x * x + dx = x * x + 2 * x, and
# x.gradient() = 2 * x + 2 = 4.0
z.backward()
return x.gradient()
print(test_dygraph_grad(create_graph=False)) # [2.]
print(test_dygraph_grad(create_graph=True)) # [4.]
代码示例 2
import paddle
def test_dygraph_grad(grad_outputs=None):
x = paddle.to_tensor(2.0)
x.stop_gradient = False
y1 = x * x
y2 = x * 3
# If grad_outputs=None, dy1 = [1], dy2 = [1].
# If grad_outputs=[g1, g2], then:
# - dy1 = [1] if g1 is None else g1
# - dy2 = [1] if g2 is None else g2
# Since y1 = x * x, dx = 2 * x * dy1.
# Since y2 = x * 3, dx = 3 * dy2.
# Therefore, the final result would be:
# dx = 2 * x * dy1 + 3 * dy2 = 4 * dy1 + 3 * dy2.
dx = paddle.grad(
outputs=[y1, y2],
inputs=[x],
grad_outputs=grad_outputs)[0]
return dx.numpy()
grad_value = paddle.to_tensor(4.0)
# dy1 = [1], dy2 = [1]
print(test_dygraph_grad(None)) # [7.]
# dy1 = [1], dy2 = [4]
print(test_dygraph_grad([None, grad_value])) # [16.]
# dy1 = [4], dy2 = [1]
print(test_dygraph_grad([grad_value, None])) # [19.]
# dy1 = [3], dy2 = [4]
grad_y1 = paddle.to_tensor(3.0)
print(test_dygraph_grad([grad_y1, grad_value])) # [24.]
PaddlePaddle 自动求导的更多相关文章
- PyTorch官方中文文档:自动求导机制
自动求导机制 本说明将概述Autograd如何工作并记录操作.了解这些并不是绝对必要的,但我们建议您熟悉它,因为它将帮助您编写更高效,更简洁的程序,并可帮助您进行调试. 从后向中排除子图 每个变量都有 ...
- 『PyTorch x TensorFlow』第六弹_从最小二乘法看自动求导
TensoFlow自动求导机制 『TensorFlow』第二弹_线性拟合&神经网络拟合_恰是故人归 下面做了三个简单尝试, 利用包含gradients.assign等tf函数直接构建图进行自动 ...
- 什么是pytorch(2Autograd:自动求导)(翻译)
Autograd: 自动求导 pyTorch里神经网络能够训练就是靠autograd包.我们来看下这个包,然后我们使用它来训练我们的第一个神经网络. autograd 包提供了对张量的所有运算自动求导 ...
- 『PyTorch』第三弹_自动求导
torch.autograd 包提供Tensor所有操作的自动求导方法. 数据结构介绍 autograd.Variable 这是这个包中最核心的类. 它包装了一个Tensor,并且几乎支持所有的定义在 ...
- PytorchZerotoAll学习笔记(三)--自动求导
Pytorch给我们提供了自动求导的函数,不用再自己再推导计算梯度的公式了 虽然有了自动求导的函数,但是这里我想给大家浅析一下:深度学习中的一个很重要的反向传播 references:https:// ...
- 从零开始学习MXnet(四)计算图和粗细粒度以及自动求导
这篇其实跟使用MXnet的关系不大,但对于我们理解深度学习的框架设计还是很有帮助的. 首先还是对promgramming models的一个简单介绍,这个东西实际上是在编译里面经常出现的东西,我们在编 ...
- Pytorch学习(一)—— 自动求导机制
现在对 CNN 有了一定的了解,同时在 GitHub 上找了几个 examples 来学习,对网络的搭建有了笼统地认识,但是发现有好多基础 pytorch 的知识需要补习,所以慢慢从官网 API进行学 ...
- Pytorch Tensor, Variable, 自动求导
2018.4.25,Facebook 推出了 PyTorch 0.4.0 版本,在该版本及之后的版本中,torch.autograd.Variable 和 torch.Tensor 同属一类.更确切地 ...
- [深度学习] pytorch学习笔记(1)(数据类型、基础使用、自动求导、矩阵操作、维度变换、广播、拼接拆分、基本运算、范数、argmax、矩阵比较、where、gather)
一.Pytorch安装 安装cuda和cudnn,例如cuda10,cudnn7.5 官网下载torch:https://pytorch.org/ 选择下载相应版本的torch 和torchvisio ...
- pytorch的自动求导机制 - 计算图的建立
一.计算图简介 在pytorch的官网上,可以看到一个简单的计算图示意图, 如下. import torchfrom torch.autograd import Variable x = Variab ...
随机推荐
- vue3 vue-i18n 入口文件配置报警
报警: You are running the esm-bundler build of vue-i18n. It is recommended to conf 解决: 在vue.config.js文 ...
- nginx 代理路径
反向代理被代理url没有截取 /report/api/ /report/api/bussinessRisk/zhucai/creditInquiry 应该是/bussinessRisk/zhucai/ ...
- tableau连接mysql
1.下载驱动地址:https://dev.mysql.com/downloads/connector/odbc/ 2.选择MSI Installer自动安装自动配置 3.本地127.0.0.1(其他I ...
- webpack之loader与plugin
loader与plugin的区别 loader的作用是将代码进行转换,比如less转成css,一个loader就是一个函数,接收的参数是上一个loader的返回值,loader进行一系列处理后 返回新 ...
- 《MySQL是怎样运行的》第七章小结
- Spring源码分析之getBean
一.前言 spring作为JAVAEE最核心的框架,是每一个java开发者所必须掌握的,非常重要,本篇从一个简单例子入手,由浅入深的分析spring创建bean的全过程,目标在于彻底搞懂spring原 ...
- 2.C/C++的const
1.C语言的const修饰的变量都有空间 2.C语言的const修饰的全局变量具有外部链接属性 3.C++语言的const修饰的变量有时有空间,有时没有空间(发生常量折叠,且没有对变量进行取址操作) ...
- University of Toronto Faculty of Arts and Science MAT344– Final Assessment Combinatorics Instructors: Stanislav Balchev and Max Klambauer 19 August 2020
目录 随便找的一份测试题 T7 T9 T6 T5 solution to (a) solution to (b) solution to (c) solution to (d) T1 T2 T3 T4 ...
- 集成-AgileConfig基于.NetCore的一个轻量级配置中心
微服务确实是行业的一个趋势,我自己也在把一些项目往微服务架构迁移.玩微服务架构配置中心是一个绕不过去的东西,有很多大牌的可以选,比如spring-cloud-config,apoll,disconf等 ...
- Treemap按key和value降序排序
Treemap是一种根据键排序的数据结构,可以通过重载它的比较器来按照值排序.要按键排序,可以使用默认的比较器,而要按值排序,可以创建一个自定义的比较器并将其传递给treemap的构造函数. 以下是按 ...