bzoj4671 异或图(斯特林反演,线性基)

祭奠天国的bzoj。

题解时间

首先考虑类似于容斥的东西。

设 $ f_{ i } $ 为至少有 $ i $ 个连通块的方案数, $ g_{ i } $ 为正好有 $ i $ 个连通块的方案数。

那么有

\[f_{ m } = \sum\limits_{ i = m }^{n} \begin{Bmatrix} i \\ m \end{Bmatrix} g_{ i }
\]

斯特林反演就有

\[g_{ 1 } = \sum\limits_{ i = 1 }^{ n } (-1)^{ i - 1 } \begin{bmatrix} i \\ 1 \end{bmatrix} f_{ i }
\]

其中

\[\begin{bmatrix} i \\ 1 \end{bmatrix} = ( i - 1 )!
\]

那么考虑求 $ f_{ i } $ 。

枚举所有可能的子集划分,复杂度为 $ Bell(n) $ ,

对于每个划分,要保证划分之间的边全部不存在,

由此得出异或方程组,设秩为 $ c $ ,则对答案贡献为 $ 2^{ s - c } $ 。

线性基解决。

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long lint;
struct pat{int x,y;pat(int x=0,int y=0):x(x),y(y){}bool operator<(const pat &p)const{return x==p.x?y<p.y:x<p.x;}};
template<typename TP>inline void read(TP &tar)
{
TP ret=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){ret=ret*10+(ch-'0');ch=getchar();}
tar=ret*f;
}
template<typename TP,typename... Args>inline void read(TP& t,Args&... args){read(t),read(args...);}
namespace RKK
{
const int N=12,M=62;
int n,m,len;lint ans;
char str[114];
bool mp[M][N][N];
lint fac[N];
int bl[N];
lint b[M];
void dfs(int x,int cnt)
{
if(x>n)
{
int s=0;
for(int i=1;i<=n;i++)for(int j=i+1;j<=n;j++)if(bl[i]!=bl[j])
{
lint val=0;
for(int k=1;k<=m;k++)if(mp[k][i][j]) val|=(1ll<<(k-1));
for(int k=1;k<=s;k++) if((val^b[k])<val) val^=b[k];
if(val) b[++s]=val;
}
ans+=fac[cnt]*(1ll<<(m-s));
return;
}
for(int i=1;i<=cnt+1;i++)
bl[x]=i,dfs(x+1,max(cnt,i));
}
int main()
{
read(m);for(int i=1;i<=m;i++)
{
scanf("%s",str+1);if(i==1){len=strlen(str+1);while(n*(n-1)/2!=len) n++;}
for(int j=1,o=0;j<=n;j++)for(int k=j+1;k<=n;k++) mp[i][j][k]=str[++o]-'0';
}
fac[1]=1;for(int i=2;i<=n;i++) fac[i]=fac[i-1]*(1-i);
dfs(1,0),printf("%lld\n",ans);
return 0;
}
}
int main(){return RKK::main();}

bzoj4671 异或图(斯特林反演,线性基)的更多相关文章

  1. BZOJ4671 异或图 斯特林反演+线性基

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4671 题解 半年前刚学计数的时候对这道题怀着深深的景仰,现在终于可以来做这道题了. 类似于一般 ...

  2. bzoj4671: 异或图——斯特林反演

    [BZOJ4671]异或图 - xjr01 - 博客园 考虑先算一些限制少的情况 gi表示把n个点的图,划分成i个连通块的方案数 连通块之间不连通很好处理(怎么处理看下边),但是内部必须连通,就很难办 ...

  3. BZOJ4671 异或图(容斥+线性基)

    题意 定义两个结点数相同的图 \(G_1\) 与图 \(G_2\) 的异或为一个新的图 \(G\) ,其中如果 \((u, v)\) 在 \(G_1\) 与 \(G_2\) 中的出现次数之和为 \(1 ...

  4. 【bzoj4671】异或图(容斥+斯特林反演+线性基)

    传送门 题意: 给出\(s,s\leq 60\)张图,每张图都有\(n,n\leq 10\)个点. 现在问有多少个图的子集,满足这些图的边"异或"起来后,这张图为连通图. 思路: ...

  5. bzoj 4671 异或图——容斥+斯特林反演+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 考虑计算不是连通图的方案,乘上容斥系数来进行容斥. 可以枚举子集划分(复杂度是O(Be ...

  6. bzoj 4671 异或图 —— 容斥+斯特林反演+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方 ...

  7. bzoj4671: 异或图

    bzoj4671: 异或图 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 ( ...

  8. BZOJ4671异或图

    题目描述 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中, 否则这条边不在 ...

  9. P5169 xtq的异或和(FWT+线性基)

    传送门 我咋感觉我学啥都是白学-- 首先可以参考一下这一题,从中我们可以知道只要知道两点间任意一条路径以及整个图里所有环的线性基,就可以得知这两个点之间的所有路径的异或和 然而我好像并不会求线性基能张 ...

随机推荐

  1. python内置模块之re模块

    内容概要 re模块常用方法 findall search match re模块其他方法 split sub subn compile finditer findall 对无名分组优先展示 re实战之爬 ...

  2. linux下gdb如何处理coredump错误

    linux下gdb如何处理coredump错误 在编写C++程序中,我们经常会遇到一种错误,segment fault, 这种coredump错误 会导致程序运行时异常退出或者终止,这种错误没有明显错 ...

  3. 海盗湾The Pirate Bay:每一名技术人员都应该思考的问题

    海盗湾The Pirate Bay:一场互联网技术下没有硝烟的战争 写在前面: 开学啦,返校啦!祝大家新的一年,工作顺顺利利,家庭幸福美满! 正文: 假期的时候,闲来无事,看了几部纪录片,其中< ...

  4. Linux-CPU优化之上下文切换

    为什么大量进程(通常进程数大于CPU个数)的运行会导致CPU长时间处于等待时间而导致平均负债率过高呢?没有使用CPU且无不可中断的进程,这就涉及到了上下文切换. 巧妙地利用了时间片轮转的方式, CPU ...

  5. [LeetCode]1470. 重新排列数组

    给你一个数组 nums ,数组中有 2n 个元素,按 [x1,x2,...,xn,y1,y2,...,yn] 的格式排列. 请你将数组按 [x1,y1,x2,y2,...,xn,yn] 格式重新排列, ...

  6. Linux下使用Shell处理文本时最常用的工具

    find 文件查找 查找txt和pdf文件 find . \( -name "*.txt" -o -name "*.pdf" \) -print 正则方式查找. ...

  7. CobaltStrike逆向学习系列(5):Bypass BeaconEye

    这是[信安成长计划]的第 5 篇文章 关注微信公众号[信安成长计划] 0x00 目录 0x01 BeaconEye 检测原理 0x02 Bypass 1 0x03 Bypass 2 0x04 效果图 ...

  8. 相等性 比较【ReferenceEquals、静态Equals、==(ceq)、实例eEquals】

    感觉 最近学习学疯了,突然对以前熟悉的东西感到陌生.然后又回头重新挖掘一下 什么是相等性呢?以前一直用== 默认是值相等,从未去考虑,是地址相等还值相等.今天就详细的研究一下. .net 平台提供了4 ...

  9. Kubernetes集群搭建(详细)

    kubernetes集群搭建(kubeadm方式) kubeadm是官方社区推出的一个用于快速部署kubernetes集群的工具.这个工具能通过两条指令完成一个kubernetes集群的部署: # 创 ...

  10. spring--启用注解功能

    <beans xmlns="http://www.springframework.org/schema/beans" xmlns:p="http://www.spr ...