《PyTorch深度学习实践》完结合集_哔哩哔哩_bilibili

Softmax Classifer

1、二分类问题:糖尿病预测

2、多分类问题

MNIST Dataset:10个标签,图像数字(0-9)识别

①用sigmoid:输出每个类别的概率

但这种情况下,类别之间所存在的互相抑制的关系没有办法体现,当一个类别出现的概率较高时,其他类别出现的概率仍然有可能很高。

换言之,当计算输出为1的概率之后,再计算输出为2的概率时,并不是在输出为非1的条件下进行的,也就是说,所有输出的概率之和实际上是大于1的。

②用softmax:输出每个类别的概率的分布

 3、softmax原理

保证两点:

※每个类别概率都>0------指数函数

※所有类别概率相加为1------求和,占比

 4、Softmax Loss Function

①NLLLoss

②Torch.nn.CrossEntropyLoss()中包含了最后一层的softmax激活

③交叉熵损失(CrossEntropyLoss)和NLL损失之间的差别

5、实例:MNIST Dataset

①数据准备

transform将图像转换成图像张量(CxWxH)(通道x宽x高),取值在[0,1]

再进行标准化

## 将图像数据转换成图像张量
transform = transforms.Compose([
transforms.ToTensor(),
# 标准化,均值和标准差
transforms.Normalize((0.1307,), (0.3081,))
])

②模型构建

完整代码

# -*- coding: utf-8 -*-
"""
Created on Wed Aug 4 09:08:32 2021 @author: motoh
""" import torch
## 对图像数据进行处理的包
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim # prepare dataset batch_size = 64
## 将图像数据转换成图像张量
# 标准化,均值和标准差
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size) # design model using class class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = torch.nn.Linear(784, 512)
self.l2 = torch.nn.Linear(512, 256)
self.l3 = torch.nn.Linear(256, 128)
self.l4 = torch.nn.Linear(128, 64)
self.l5 = torch.nn.Linear(64, 10) def forward(self, x):
#变成矩阵 -1其实就是自动获取mini_batch,784是1*28*28,图片的像素数量
x = x.view(-1, 784)
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = F.relu(self.l3(x))
x = F.relu(self.l4(x))
# 最后一层不做激活,不进行非线性变换
return self.l5(x) model = Net() # construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # training cycle forward, backward, update def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
# 获得一个批次的数据和标签
inputs, target = data
optimizer.zero_grad()
# 获得模型预测结果(64, 10)
outputs = model(inputs)
# 交叉熵代价函数outputs(64,10),target(64)
loss = criterion(outputs, target)
loss.backward()
optimizer.step() running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx+1, running_loss/300))
running_loss = 0.0 def test():
correct = 0
total = 0
## 不计算梯度
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model(images)
# dim = 1 列是第0个维度,行是第1个维度,## 每一行最大值的下标
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item() # 张量之间的比较运算
print('accuracy on test set: %d %% ' % (100*correct/total)) if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()

 运行结果

Pytorch实战学习(五):多分类问题的更多相关文章

  1. PyTorch深度学习实践——多分类问题

    多分类问题 目录 多分类问题 Softmax 在Minist数据集上实现多分类问题 作业 课程来源:PyTorch深度学习实践--河北工业大学 <PyTorch深度学习实践>完结合集_哔哩 ...

  2. Pytorch实战(3)----分类

    一.分类任务: 将以下两类分开. 创建数据代码: # make fake data n_data = torch.ones(100, 2) x0 = torch.normal(2*n_data, 1) ...

  3. 深度学习之PyTorch实战(3)——实战手写数字识别

    上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字 ...

  4. 深度学习之PyTorch实战(1)——基础学习及搭建环境

    最近在学习PyTorch框架,买了一本<深度学习之PyTorch实战计算机视觉>,从学习开始,小编会整理学习笔记,并博客记录,希望自己好好学完这本书,最后能熟练应用此框架. PyTorch ...

  5. 深度学习之PyTorch实战(2)——神经网络模型搭建和参数优化

    上一篇博客先搭建了基础环境,并熟悉了基础知识,本节基于此,再进行深一步的学习. 接下来看看如何基于PyTorch深度学习框架用简单快捷的方式搭建出复杂的神经网络模型,同时让模型参数的优化方法趋于高效. ...

  6. Spring实战第五章学习笔记————构建Spring Web应用程序

    Spring实战第五章学习笔记----构建Spring Web应用程序 Spring MVC基于模型-视图-控制器(Model-View-Controller)模式实现,它能够构建像Spring框架那 ...

  7. 对比学习:《深度学习之Pytorch》《PyTorch深度学习实战》+代码

    PyTorch是一个基于Python的深度学习平台,该平台简单易用上手快,从计算机视觉.自然语言处理再到强化学习,PyTorch的功能强大,支持PyTorch的工具包有用于自然语言处理的Allen N ...

  8. 参考《深度学习之PyTorch实战计算机视觉》PDF

    计算机视觉.自然语言处理和语音识别是目前深度学习领域很热门的三大应用方向. 计算机视觉学习,推荐阅读<深度学习之PyTorch实战计算机视觉>.学到人工智能的基础概念及Python 编程技 ...

  9. Pytorch迁移学习实现驾驶场景分类

    Pytorch迁移学习实现驾驶场景分类 源代码:https://github.com/Dalaska/scene_clf 1.安装 pytorch 直接用官网上的方法能装上但下载很慢.通过换源安装发现 ...

  10. Docker虚拟化实战学习——基础篇(转)

    Docker虚拟化实战学习——基础篇 2018年05月26日 02:17:24 北纬34度停留 阅读数:773更多 个人分类: Docker   Docker虚拟化实战和企业案例演练 深入剖析虚拟化技 ...

随机推荐

  1. LinkedHashmap简要说明

    https://segmentfault.com/a/1190000012964859 LinkedHashMap 继承自 HashMap,在 HashMap 基础上,通过维护一条双向链表,解决了 H ...

  2. servlet传入多个数据

    通过&来传入值:<a href="bookquery?page=1&nameBook=&author=&publisher=>1</a> ...

  3. Mybatis的常用配置-多表关联查询

    Mapper.xml常用配置 全局配置文件(数据库,事物管理,Mapper的注册.打印文件SQL.慢性加载.二级缓存) Mapper配置文件 (定义自定义接口的具体方案;SQL.数据库.数据库与POJ ...

  4. 推荐系统[二]:召回算法超详细讲解[召回模型演化过程、召回模型主流常见算法(DeepMF_TDM_Airbnb Embedding_Item2vec等)、召回路径简介、多路召回融合]

    1.前言:召回排序流程策略算法简介 推荐可分为以下四个流程,分别是召回.粗排.精排以及重排: 召回是源头,在某种意义上决定着整个推荐的天花板: 粗排是初筛,一般不会上复杂模型: 精排是整个推荐环节的重 ...

  5. ubuntu lnmp环境搭建 LNMP(Ubuntu 20.04 + Nginx + PHP 7.1 + Mysql5.7)

    转载csdn: ubuntu lnmp环境搭建 LNMP(Ubuntu 20.04 + Nginx + PHP 7.1 + Mysql5.7)_ts3211的博客-CSDN博客_lnmp环境搭建

  6. el-input只能输入数字和小数

    1.oninput ="value=value.replace(/[^\d]/g,'')" //只能输入数字 2.oninput ="value=value.replac ...

  7. 基于Python的OpenGL 05 之坐标系统

    1. 引言 本文基于Python语言,描述OpenGL的坐标系统 前置知识可参考: 基于Python的OpenGL 04 之变换 - 当时明月在曾照彩云归 - 博客园 (cnblogs.com) 笔者 ...

  8. ArcGIS for Android 实现加载地图

    创建第一个应用 1.前期项目准备 1.1. 创建新工程 新建一个空活动项目 选择语言.平台,修改命名等 1.2. 添加ArcGIS SDK build.gradle (Project: <pro ...

  9. 需要登陆,请求数据 session

    requests中的session模块思路:# 1. 登录 --> 等到cookie# 2.带着cookie 请求到书架的url-->书架上的内容#注意:# 两个操作要连续起来操作# 我们 ...

  10. 学习笔记3:Android Studio 配置NDK编译c++代码

    NDK编译c++代码有两个方式: 1  ndk-build.cmd + Android.mk + Application.mk 编译, 可单独用ndk编译, 不使用IDE,使用Android需要配置b ...