洛谷 P4593 [TJOI2018]教科书般的亵渎
洛谷 P4593 [TJOI2018]教科书般的亵渎
神仙伯努利数。。。网上一堆关于伯努利数的东西但是没有证明,所以只好记结论了?
题目本质要求\(\sum_{i=1}^{n}i^k\)
伯努利数,\(B_0=1,B_i=-\frac{\sum_{j=0}^{i-1}C_{n+1}^jB_j}{i+1}(i>0)\)
就这玩意(什么鬼)。。。
然后就神仙的有\(\sum_{i=1}^{n}i^k=\frac{\sum_{i=1}^{k+1}C_{k+1}^{i}B_{k+1-i}(n+1)^{i}}{k+1}\)了?
不会证啊QAQ
#include<bits/stdc++.h>
#define il inline
#define vd void
#define mod 1000000007
typedef long long ll;
il ll gi(){
ll x=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-')f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
il ll pow(ll x,ll y){
ll ret=1;
while(y){
if(y&1)ret=ret*x%mod;
x=x*x%mod;y>>=1;
}
return ret;
}
ll k,a[101],B[101],C[101][101],inv[101];
il ll query(ll x){
ll ret=0;
for(int i=1;i<=k+1;++i)ret+=C[k+1][i]*B[k+1-i]%mod*pow((x+1)%mod,i)%mod;
return ret%mod*inv[k+1]%mod;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("4593.in","r",stdin);
freopen("4593.out","w",stdout);
#endif
ll T=gi(),n,m;
C[0][0]=1;
for(int i=1;i<101;++i){
C[i][0]=1;
for(int j=1;j<=i;++j)C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
}
inv[1]=1;for(int i=2;i<101;++i)inv[i]=(mod-(mod/i)*inv[mod%i]%mod)%mod;
B[0]=1;
for(int i=1;i<101;++i){
B[i]=0;
for(int j=0;j<i;++j)B[i]+=C[i+1][j]*B[j]%mod;
B[i]=(mod-B[i]%mod*inv[i+1]%mod)%mod;
}
while(T--){
n=gi(),m=gi();k=m+1;
for(int i=1;i<=m;++i)a[i]=gi();
std::sort(a+1,a+m+1);
ll ans=0;
a[++m]=n+1;
for(int i=1;i<=m;++i){
for(int j=i;j<=m;++j)ans+=(query(a[j]-1)-query(a[j-1])+mod)%mod;
for(int j=m;j>=i;--j)a[j]-=a[i];
}
printf("%lld\n",ans%mod);
}
return 0;
}
洛谷 P4593 [TJOI2018]教科书般的亵渎的更多相关文章
- 洛谷P4593 [TJOI2018]教科书般的亵渎 【数学】
题目链接 洛谷P4593 题解 orz dalao upd:经典的自然数幂和,伯努利数裸题 由题我们只需模拟出代价,只需使用\(S(n,k) = \sum\limits_{i = 1}^{n} i^{ ...
- 洛谷P4593 [TJOI2018]教科书般的亵渎
小豆喜欢玩游戏,现在他在玩一个游戏遇到这样的场面,每个怪的血量为\(a_i\),且每个怪物血量均不相同,小豆手里有无限张"亵渎".亵渎的效果是对所有的怪造成\(1\)点伤害,如果 ...
- 洛谷P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)
题意 题目链接 Sol 打出暴力不难发现时间复杂度的瓶颈在于求\(\sum_{i = 1}^n i^k\) 老祖宗告诉我们,这东西是个\(k\)次多项式,插一插就行了 上面的是\(O(Tk^2)\)的 ...
- P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)
传送门 首先所有亵渎的张数\(k=m+1\),我们考虑每一次使用亵渎,都是一堆\(i^k\)之和减去那几个没有出现过的\(j^k\),对于没有出现过的我们可以直接快速幂处理并减去,所以现在的问题就是如 ...
- Luogu P4593 [TJOI2018]教科书般的亵渎
亵渎终于离开标准了,然而铺场快攻也变少了 给一个大力枚举(无任何性质)+艹出自然数幂和的方法,但是复杂度极限是\(O(k^4)\)的,不过跑的好快233 首先简单数学分析可以得出\(k=m+1\),因 ...
- 并不对劲的复健训练-bzoj5339:loj2578:p4593:[TJOI2018]教科书般的亵渎
题目大意 题目链接 题解 先将\(a\)排序. \(k\)看上去等于怪的血量连续段的个数,但是要注意当存在\(a_i+1=a_{i+1}\)时,虽然它们之间的连续段为空,但是还要算上:而当\(a_m= ...
- p4593 [TJOI2018]教科书般的亵渎
分析 我们发现$Ans = \sum_i \sum_j (j-p_i)^{m+1}$ 因此直接套用622f的方法即可 代码 #include<bits/stdc++.h> using na ...
- 【BZOJ5339】[TJOI2018]教科书般的亵渎(斯特林数)
[BZOJ5339][TJOI2018]教科书般的亵渎(斯特林数) 题面 BZOJ 洛谷 题解 显然交亵渎的次数是\(m+1\). 那么这题的本质就是让你求\(\sum_{i=1}^n i^{m+1} ...
- BZOJ.5339.[TJOI2018]教科书般的亵渎(拉格朗日插值) & 拉格朗日插值学习笔记
BZOJ 洛谷 题意的一点说明: \(k\)次方这个\(k\)是固定的,也就是最初需要多少张亵渎,每次不会改变: 因某个怪物死亡引发的亵渎不会计分. 不难发现当前所需的张数是空格数+1,即\(m+1\ ...
随机推荐
- VS2017 加载项目 :未找到框架“.NETFramework,Version=v4.7”的引用程序集(出坑指南)
报出的错误为: 错误MSB3644: 未找到框架“.NETFramework,Version=v4.7”的引用程序集.若要解决此问题,请安装此框架版本的 SDK 或 Targeting Pack,或将 ...
- [翻译] snapshotViewAfterScreenUpdates
snapshotViewAfterScreenUpdates This method very efficiently captures the current rendered appearance ...
- WinPE ISO制作
1.安装ADK,然后导出winPE镜像文件和启动文件: 打开 部署和映像工具环境,cd "Windows Preinstallation Environment",运行 copyp ...
- 北美IT求职攻略
http://www.followmedoit.com/bbs/forum.php?mod=viewthread&tid=19&extra=page%3D1 身在北美,想留下来并能过得 ...
- Chrome新发现
昨晚写代码的时候惊喜的发现Chrome中能直接使用一些ES6的语法: let, const, 箭头函数等已经能直接使用. 酷酷的. 另外我的Chrome版本还是比较旧的,并不需要最新版本.
- [SDOI2010]Hide and Seek
题目 非常显然就是求一下距离每一个点曼哈顿距离最近的点和最远的点就好了 最远点非常好算,我们建完\(kd-tree\)之后直接暴力就好了 找最近点的时候会有这样一个问题,就是自己找到了自己 所以我们需 ...
- sql按月模糊查询
select * from tb where convert(varchar(7),date,120) = '2011-05'
- Hadoop学习之路(二)Hadoop发展背景
Hadoop产生的背景 1. HADOOP最早起源于Nutch.Nutch的设计目标是构建一个大型的全网搜索引擎,包括网页抓取.索引.查询等功能,但随着抓取网页数量的增加,遇到了严重的可扩展性问题—— ...
- Apache去掉index.php
把 #LoadModule rewrite_module modules/mod_rewrite.so 前面的#去掉, 再把权限AllowOverride None都改为AllowOverride A ...
- [luogu2680] 运输计划
题面 很明显, 由于是求最长路的最小值, 我们可以使用二分求解. 我们二分一个长度\(mid\), 将所有使得\(dis(u, v)\)大于\(mid\)的点对\((u, v)\)找出, 设总共有 ...