洛谷 P4593 [TJOI2018]教科书般的亵渎


神仙伯努利数。。。网上一堆关于伯努利数的东西但是没有证明,所以只好记结论了?

题目本质要求\(\sum_{i=1}^{n}i^k\)

伯努利数,\(B_0=1,B_i=-\frac{\sum_{j=0}^{i-1}C_{n+1}^jB_j}{i+1}(i>0)\)

就这玩意(什么鬼)。。。

然后就神仙的有\(\sum_{i=1}^{n}i^k=\frac{\sum_{i=1}^{k+1}C_{k+1}^{i}B_{k+1-i}(n+1)^{i}}{k+1}\)了?

不会证啊QAQ

#include<bits/stdc++.h>
#define il inline
#define vd void
#define mod 1000000007
typedef long long ll;
il ll gi(){
ll x=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-')f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
il ll pow(ll x,ll y){
ll ret=1;
while(y){
if(y&1)ret=ret*x%mod;
x=x*x%mod;y>>=1;
}
return ret;
}
ll k,a[101],B[101],C[101][101],inv[101];
il ll query(ll x){
ll ret=0;
for(int i=1;i<=k+1;++i)ret+=C[k+1][i]*B[k+1-i]%mod*pow((x+1)%mod,i)%mod;
return ret%mod*inv[k+1]%mod;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("4593.in","r",stdin);
freopen("4593.out","w",stdout);
#endif
ll T=gi(),n,m;
C[0][0]=1;
for(int i=1;i<101;++i){
C[i][0]=1;
for(int j=1;j<=i;++j)C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
}
inv[1]=1;for(int i=2;i<101;++i)inv[i]=(mod-(mod/i)*inv[mod%i]%mod)%mod;
B[0]=1;
for(int i=1;i<101;++i){
B[i]=0;
for(int j=0;j<i;++j)B[i]+=C[i+1][j]*B[j]%mod;
B[i]=(mod-B[i]%mod*inv[i+1]%mod)%mod;
}
while(T--){
n=gi(),m=gi();k=m+1;
for(int i=1;i<=m;++i)a[i]=gi();
std::sort(a+1,a+m+1);
ll ans=0;
a[++m]=n+1;
for(int i=1;i<=m;++i){
for(int j=i;j<=m;++j)ans+=(query(a[j]-1)-query(a[j-1])+mod)%mod;
for(int j=m;j>=i;--j)a[j]-=a[i];
}
printf("%lld\n",ans%mod);
}
return 0;
}

洛谷 P4593 [TJOI2018]教科书般的亵渎的更多相关文章

  1. 洛谷P4593 [TJOI2018]教科书般的亵渎 【数学】

    题目链接 洛谷P4593 题解 orz dalao upd:经典的自然数幂和,伯努利数裸题 由题我们只需模拟出代价,只需使用\(S(n,k) = \sum\limits_{i = 1}^{n} i^{ ...

  2. 洛谷P4593 [TJOI2018]教科书般的亵渎

    小豆喜欢玩游戏,现在他在玩一个游戏遇到这样的场面,每个怪的血量为\(a_i\)​,且每个怪物血量均不相同,小豆手里有无限张"亵渎".亵渎的效果是对所有的怪造成\(1\)点伤害,如果 ...

  3. 洛谷P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)

    题意 题目链接 Sol 打出暴力不难发现时间复杂度的瓶颈在于求\(\sum_{i = 1}^n i^k\) 老祖宗告诉我们,这东西是个\(k\)次多项式,插一插就行了 上面的是\(O(Tk^2)\)的 ...

  4. P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)

    传送门 首先所有亵渎的张数\(k=m+1\),我们考虑每一次使用亵渎,都是一堆\(i^k\)之和减去那几个没有出现过的\(j^k\),对于没有出现过的我们可以直接快速幂处理并减去,所以现在的问题就是如 ...

  5. Luogu P4593 [TJOI2018]教科书般的亵渎

    亵渎终于离开标准了,然而铺场快攻也变少了 给一个大力枚举(无任何性质)+艹出自然数幂和的方法,但是复杂度极限是\(O(k^4)\)的,不过跑的好快233 首先简单数学分析可以得出\(k=m+1\),因 ...

  6. 并不对劲的复健训练-bzoj5339:loj2578:p4593:[TJOI2018]教科书般的亵渎

    题目大意 题目链接 题解 先将\(a\)排序. \(k\)看上去等于怪的血量连续段的个数,但是要注意当存在\(a_i+1=a_{i+1}\)时,虽然它们之间的连续段为空,但是还要算上:而当\(a_m= ...

  7. p4593 [TJOI2018]教科书般的亵渎

    分析 我们发现$Ans = \sum_i \sum_j (j-p_i)^{m+1}$ 因此直接套用622f的方法即可 代码 #include<bits/stdc++.h> using na ...

  8. 【BZOJ5339】[TJOI2018]教科书般的亵渎(斯特林数)

    [BZOJ5339][TJOI2018]教科书般的亵渎(斯特林数) 题面 BZOJ 洛谷 题解 显然交亵渎的次数是\(m+1\). 那么这题的本质就是让你求\(\sum_{i=1}^n i^{m+1} ...

  9. BZOJ.5339.[TJOI2018]教科书般的亵渎(拉格朗日插值) & 拉格朗日插值学习笔记

    BZOJ 洛谷 题意的一点说明: \(k\)次方这个\(k\)是固定的,也就是最初需要多少张亵渎,每次不会改变: 因某个怪物死亡引发的亵渎不会计分. 不难发现当前所需的张数是空格数+1,即\(m+1\ ...

随机推荐

  1. mysql-sql-standard

    https://github.com/zhishutech/mysql-sql-standard

  2. 定制NSError

    定制NSError 效果: 系统的NSError是可以自己定制的,以下提供代码来实现并表示如何使用: YXError.h 与 YXError.m // // YXError.h // CustomYX ...

  3. OC实用转换model的工具

    OC实用转换model的工具 说明 这是本人写的一个专门用来将json数据直接转换生成Model文件的工具,目的是为了让你从写Model文件的繁琐过程中解脱出来,提升效率以及减少出错的几率,工具的特点 ...

  4. Java——并发编程

    1.在java中守护线程和本地线程区别? java中的线程分为两种:守护线程(Daemon)和用户线程(User). 任何线程都可以设置为守护线程和用户线程,通过方法Thread.setDaemon( ...

  5. 铁乐学python27_模块学习2

    大部份内容摘自博客http://www.cnblogs.com/Eva-J/ collections模块 在内置数据类型(dict.list.set.tuple)的基础上, collections模块 ...

  6. 铁乐学python-面向对象的更多说明

    以下内容摘自授课老师的博客http://www.cnblogs.com/Eva-J/ 面向对象的更多说明 面向对象的软件开发 很多人在学完了python的class机制之后,遇到一个生产中的问题,还是 ...

  7. 线性规划 Matlab

    线性规划的 Matlab 解法 形式 s.t.( subject to) c和 x为n 维列向量, A. Aeq 为适当维数的矩阵,b .beq为适当维数的列向 量. 函数: linprog(c,A, ...

  8. Hadoop HBase概念学习系列之HBase里的高表设计概念(表设计)(二十八)

    在下面这篇博文里,我给各位博客们,分享了创建HBase表,但这远不止打好基础. HBase编程 API入门系列之create(管理端而言)(8) 在关系型数据库里,表的高表和宽表是不存在的.在如HBa ...

  9. Aria2 无限制下载神器

    Aria2 是一款免费开源跨平台且不限速的多线程下载软件,Aria2的优点是速度快.体积小.资源占用少:支持 HTTP / FTP / BT / Magnet 磁力链接等类型的文件下载:支持 Win. ...

  10. 基于easyui开发Web版Activiti流程定制器详解(五)——Draw2d详解(一)

    背景: 小弟工作已有十年有余,期间接触了不少工作流产品,个人比较喜欢的还是JBPM,因为出自名门Jboss所以备受推崇,但是现在JBPM版本已经与自己当年使用的版本(3.X)大相径庭,想升级也不太容易 ...