BZOJ3155:Preprefix sum——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=3155
最朴素的想法是两棵树状数组,一个记录前缀和,一个记录前缀前缀和,但是第二个我们非常不好修改
但其实我们发现$SS_i=i*a1+(i-1)*a2+…+ai$,我们可以试图构造这样的“类等差”数列,这样我们就可以通过加加减减就能做了。
为了照顾最后一位的查询,我们就维护$(n-i+1)*ai$吧!
于是我们修改就变成了两个单点修改了,查询也就是很简单了,$qry(x,1)-qry(x,0)*(n-x)$(前一个是第二棵树状数组,后面的是第一棵)。
#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e5+;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
int a[N],n,m;
ll tr[N][];
inline int lowbit(int t){return t&-t;}
inline void add(int x,ll y,int on){
for(int i=x;i<=n;i+=lowbit(i))tr[i][on]+=y;
}
inline ll qry(int x,int on){
ll res=;
for(int i=x;i;i-=lowbit(i))res+=tr[i][on];
return res;
}
int main(){
n=read(),m=read();
for(int i=;i<=n;i++){
add(i,a[i]=read(),);
add(i,(ll)(n-i+)*a[i],);
}
while(m--){
char ch[];
scanf("%s",ch);
if(ch[]=='Q'){
int x=read();
printf("%lld\n",qry(x,)-qry(x,)*(n-x));
}else{
int x=read(),y=read();
add(x,y-a[x],);
add(x,(ll)(n-x+)*(y-a[x]),);
a[x]=y;
}
}
return ;
}
BZOJ3155:Preprefix sum——题解的更多相关文章
- [bzoj3155]Preprefix sum(树状数组)
		
3155: Preprefix sum Time Limit: 1 Sec Memory Limit: 512 MBSubmit: 1183 Solved: 546[Submit][Status] ...
 - BZOJ3155: Preprefix sum
		
题解: 写过树状数组搞区间修改和区间求和的就可以秒出吧... 代码: #include<cstdio> #include<cstdlib> #include<cmath& ...
 - BZOJ3155:Preprefix sum(线段树)
		
Description Input 第一行给出两个整数N,M.分别表示序列长度和操作个数 接下来一行有N个数,即给定的序列a1,a2,....an 接下来M行,每行对应一个操作,格式见题目描述 Out ...
 - 树状数组【bzoj3155】: Preprefix sum
		
3155: Preprefix sum 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3155 把给出的a_i当成查分数组d_i做就可以了 ...
 - BZOJ 3155: Preprefix sum( 线段树 )
		
刷刷水题... 前缀和的前缀和...显然树状数组可以写...然而我不会, 只能写线段树了 把改变成加, 然后线段树维护前缀和, 某点p加, 会影响前缀和pre(x)(p≤x≤n), 对[p, n]这段 ...
 - Preprefix sum BZOJ 3155 树状数组
		
题目描述 前缀和(prefix sum)Si=∑k=1iaiS_i=\sum_{k=1}^i a_iSi=∑k=1iai. 前前缀和(preprefix sum) 则把SiS_iSi作为原序列 ...
 - 3155: Preprefix sum
		
3155: Preprefix sum https://www.lydsy.com/JudgeOnline/problem.php?id=3155 分析: 区间修改,区间查询,线段树就好了. 然后,这 ...
 - 差分+树状数组【p4868】Preprefix sum
		
Description 前缀和(prefix sum)\(S_i=\sum_{k=1}^i a_i\). 前前缀和(preprefix sum) 则把\(S_i\)作为原序列再进行前缀和.记再次求得前 ...
 - Ural 1248 Sequence Sum 题解
		
目录 Ural 1248 Sequence Sum 题解 题意 题解 程序 Ural 1248 Sequence Sum 题解 题意 给定\(n\)个用科学计数法表示的实数\((10^{-100}\s ...
 
随机推荐
- canvas高效绘制10万图形,你必须知道的高效绘制技巧
			
最近的一个客户项目中,简化的需求是绘制按照行列绘制很多个圆圈.需求看起来不难,上手就可以做,写两个for循环. 原始绘制方法 首先定义了很多Circle对象,在遍历循环中调用该对象的draw方法.代码 ...
 - mac指令备忘
			
在这里简单记录下最近使用的快捷键,备忘,随时更新. 简单指令记录 mkdir 创建路径 pwd 输出当前路径 ls 查看目录 cd touch 创建文件 tree 输出目录树 mv 源文件 目标文件或 ...
 - 深度学习之神经网络核心原理与算法-caffe&keras框架图片分类
			
之前我们在使用cnn做图片分类的时候使用了CIFAR-10数据集 其他框架对于CIFAR-10的图片分类是怎么做的 来与TensorFlow做对比. Caffe Keras 安装 官方安装文档: ht ...
 - Hadoop Streaming框架使用(二)
			
上一篇文章介绍了Streaming的各种参数,本文具体介绍使用方法. 提交hadoop任务示例: $HADOOP_HOME/bin/hadoop streaming \ -input /user/te ...
 - TeamWork#3,Week5,Scrum Meeting 11.9
			
由于经验不足和储备知识不够,最近我们的项目遇到了一些技术问题,需要对项目进行重新计划.我们总结了经验教训,找出了问题所在,明确了要补充的知识,加紧学习,将会在一周之内解决相关问题. 成员 已完成 待完 ...
 - TeamWork#3,Week5,Bing Input Method vs Sogou Input Method
			
现在电脑上用五笔的用户越来越少了,好的拼音输入法也是难求.必应输入法的前身英库拼音输入法来自微软亚洲研究院的多项基础研究成果.最新的必应输入法不仅保留了英库拼音输入法的各项优势,还结合了必应的搜索体验 ...
 - Daily Scrum (2015/11/5)
			
这天晚上我们对爬虫进行了一些测试,发现仍然存在一些不小的BUG.现在我们的爬虫已经能完成基本的功能,焉域政同学也正在把他之前写的分类功能继续完善.在BUG的测试中,我们发现如果要求爬虫爬取特定的文件类 ...
 - The Begining
			
学习记录之旅,就此开始.软件工程,Java神马的统统到我碗里来.
 - sprint冲刺(第二天)
			
今天的每日立会是在早上早餐后8点在宿舍讨论的,大概讨论了关于四则运算练习器APP的看法,也对一些较为基础的功能进行说明
 - java常见字符集
			
ASCII 名称由来 ASCII(American Standard Code for Information Interchange,美国信息互换标准编码)是基于罗马字母表的一套电脑编码系统.[1] ...
 
			
		