题解原文地址:https://www.cnblogs.com/lujiaju6555/p/8468709.html

给数组a,有两种操作,1 l r查询[l,r]中每个数出现次数的mex,注意是出现次数,mex是最小未出现的自然数,2 x y将a[x]修改为y。

题解:带修改莫队可以解决此题。带修改莫队不会的同学可以先去做下BZOJ2120,然后mex+莫队可以参考BZOJ3585。带修改莫队就是加入了第三关键字time,然后按(左端点所在块,右端点所在块,时间)排序,其中时间指的是在第几次修改操作后。注意修改时要记下原来的数,以便还原回去。维护mex可以对权值分块,如果某块中数的个数==R-L+1,那么这块所有数都出现了,否则暴力扫,我有个同学直接暴力维护也过了。。。

#include <bits/stdc++.h>
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int n, m, pos[maxn], s[maxn], c[maxn], all[maxn], t[maxn], cnt[maxn];
int qsz, csz;
struct node
{
int l, r, t, res, id;
}Node[maxn]; void add_n(int l, int r, int t, int id)
{
Node[id].l = l;
Node[id].r = r;
Node[id].t = t;
Node[id].id = id;
} struct change
{
int pos, New, Old;
}Cha[maxn]; void add_c(int pos, int New, int Old, int ans)
{
Cha[ans].pos = pos;
Cha[ans].New = New;
Cha[ans].Old = Old;
} bool cmp(node a, node b)
{
if(pos[a.l] == pos[b.l])
{
if(pos[a.r] == pos[b.r])
return a.t < b.t;
return pos[a.r] < pos[b.r];
}
return pos[a.l] < pos[b.l];
} bool cmp_id(node a, node b)
{
return a.id < b.id;
} int update(int val, int d)
{
if(s[val] > ) cnt[s[val]]--; //s是记录val 出现的次数 cnt标记这个次数是否出现 因为有多个数 可能有些数出现的次数相同 所有用++即可
s[val] += d; //因为当前数val的次数改变 所以 如果未改变时的val的次数 给cnt贡献了1个的话 要先减去 再更新s[val] 再更新cnt[s[val]]
if(s[val] > ) cnt[s[val]]++;
}
int L=, R=, T=;
int go(int idx, int val)
{
if(L <= idx && idx <= R) //如果 当前时间内 修改的位置在当前区间 则先删去上一次在这个位置更新的值 再加上本次在这个位置更新的值
{
update(c[idx], -);
update(val, );
}
c[idx] = val; //更新
} int main()
{
qsz = csz = ;
int tot = ;
scanf("%d%d", &n, &m);
for(int i=; i<=n; i++)
{
scanf("%d",&c[i]);
t[i] = c[i];
all[++tot] = c[i];
}
int block=pow(n,2.0/);
for(int i=; i<=n; i++)
pos[i] = (i-)/block + ;
for(int i=; i<=m; i++)
{
int op, l, r;
scanf("%d%d%d", &op, &l, &r);
if(op == )
{
add_n(l, r, csz, ++qsz);
}
else
{
add_c(l, r, t[l], ++csz);
t[l] = r;
all[++tot] = r;
}
}
sort(all+, all+tot+);
tot = unique(all+, all+tot+) - (all + );
for(int i=; i<=n; i++)
c[i] = lower_bound(all+, all+tot+, c[i]) - all;
for(int i=; i<=csz; i++)
{
Cha[i].New = lower_bound(all+, all+tot+, Cha[i].New) - all;
Cha[i].Old = lower_bound(all+, all+tot+, Cha[i].Old) - all;
}
sort(Node+, Node+qsz+, cmp);
for(int i=; i<=qsz; i++)
{
// for(; T < Node[i].t; T++)
// go(Cha[T+1].pos, Cha[T+1].New);
// for(; T > Node[i].t; T--)
// go(Cha[T].pos, Cha[T].Old);
for(; R < Node[i].r; R++)
update(c[R+], );
for(; R > Node[i].r; R--)
update(c[R], -);
for(; L < Node[i].l; L++)
update(c[L], -);
for(; L > Node[i].l; L--)
update(c[L-], );
for(; T < Node[i].t; T++) //遍历在询问当前区间时 的 时间之前的修改
go(Cha[T+].pos, Cha[T+].New);
for(; T > Node[i].t; T--)
go(Cha[T].pos, Cha[T].Old); for(int j=; ; j++)
if(!cnt[j])
{
Node[i].res = j;
break;
}
// cout<< Node[i].res <<endl;
}
sort(Node+, Node+qsz+, cmp_id);
for(int i=; i<=qsz; i++)
cout<< Node[i].res <<endl; return ;
}

Machine Learning CodeForces - 940F(带修改的莫队)的更多相关文章

  1. Machine Learning CodeForces - 940F (带修改的莫队)

    You come home and fell some unpleasant smell. Where is it coming from? You are given an array a. You ...

  2. codeforces 940F 带修改的莫队

    F. Machine Learning time limit per test 4 seconds memory limit per test 512 megabytes input standard ...

  3. Machine Learning Codeforces - 940F(带修莫队) && 洛谷P4074 [WC2013]糖果公园

    以下内容未验证,有错请指正... 设块大小为T,则块数为$\frac{n}{T}$ 将询问分为$(\frac{n}{T})^2$块(按照左端点所在块和右端点所在块分块),同块内按时间从小到大依次处理 ...

  4. BZOJ 2120: 数颜色 带修改的莫队算法 树状数组套主席树

    https://www.lydsy.com/JudgeOnline/problem.php?id=2120 标题里是两种不同的解法. 带修改的莫队和普通莫队比多了个修改操作,影响不大,但是注意一下细节 ...

  5. 【BZOJ】2120: 数颜色 带修改的莫队算法

    [题意]给定n个数字,m次操作,每次询问区间不同数字的个数,或修改某个位置的数字.n,m<=10^4,ai<=10^6. [算法]带修改的莫队算法 [题解]对于询问(x,y,t),其中t是 ...

  6. 【bzoj4129】Haruna’s Breakfast 带修改树上莫队+分块

    题目描述 给出一棵树,点有点权.支持两种操作:修改一个点的点权,查询链上mex. 输入 第一行包括两个整数n,m,代表树上的结点数(标号为1~n)和操作数.第二行包括n个整数a1...an,代表每个结 ...

  7. 【bzoj3052】[wc2013]糖果公园 带修改树上莫队

    题目描述 给出一棵n个点的树,每个点有一个点权,点权范围为1~m.支持两种操作:(1)修改一个点的点权 (2)对于一条路径,求$\sum\limits_{i=1}^m\sum\limits_{j=1} ...

  8. P1903 [国家集训队]数颜色 / 维护队列 带修改的莫队

    \(\color{#0066ff}{ 题目描述 }\) 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会向你发布如下指令: 1. Q L R代表询问你从第L支 ...

  9. UOJ 58 (树上带修改的莫队)

    UOJ 58 糖果公园 Problem : 给一棵n个点的树,每个点上有一种颜色,对于一条路径上的点,若 i 颜色第 j 次出现对该路径权值的贡献为 w[i] * c[j], 每次询问一条路径的权值, ...

  10. UVA - 12345 带修改的莫队

    题意显然:给出初始序列,单点修改,区间查询元素的种类. 由于时限过宽,暴力可过. 比较优秀的解法应该是莫队. 带修改的莫队题解可以看https://www.luogu.org/blog/user126 ...

随机推荐

  1. appium自动化---activity获取

    方法一:appt查询activity获取 aapt dump badging <路径/包名> | find "launchable-activity" 方法二: 1.打 ...

  2. Oracle中解析XMLType格式字段

    背景:项目从某数据交换平台获取XML数据,以Oracle的XMLType格式保存在数据库字段中,需要建立触发器.存储过程,在保存数据时解析XML字段,将数据写入其他业务表中. 参考资料:Oracle的 ...

  3. Netty 粘包/拆包应用案例及解决方案分析

    熟悉TCP变成的可以知道,无论是客户端还是服务端,但我们读取或者发送消息的时候,都需要考虑TCP底层粘包/拆包机制,下面我们先看一下TCP 粘包/拆包和基础知识,然后模拟一个没有考虑TCP粘包/拆包导 ...

  4. Redis初探(windows/linux安装)

    最近在学习Redis,先看看简介: Redis 是完全开源免费的,遵守BSD协议(可以自由的使用,修改源代码的协议,当然需要满足一定的条件),是一个高性能的key-value数据库. 特点&& ...

  5. jar包、war包

    JavaSE程序可以打包成Jar包(J其实可以理解为Java了),而JavaWeb程序可以打包成war包(w其实可以理解为Web了).然后把war发布到Tomcat的webapps目录下,Tomcat ...

  6. DevOps on AWS之Elastic BeanStalk

    Elastic BeanStalk相关概念 童话世界中存在着一种魔力beanstalk(豆荚),种在花盆里可以无限的向上生长,越长越高直达云端.AWS Elastic Beanstalk也采用类似概念 ...

  7. Mysql数据库的隔离级别

    Mysql数据库的隔离级别有四种 1.read umcommitted   读未提交(当前事务可以读取其他事务没提交的数据,会读取到脏数据) 2.read committed 读已提交(当前事务不能读 ...

  8. 20162328蔡文琛 week05 大二

    20162328 2017-2018-1 <程序设计与数据结构>第5周学习总结 教材学习内容总结 集合是收集元素并组织其他对象的对象. 集合中的元素一般由加入集合的次序或元素之间的某些固有 ...

  9. 在WPF里实现计算器软件

    一.具体代码 类代码: using System; using System.Collections.Generic; using System.Linq; using System.Text; us ...

  10. 浅谈对IT的认识!

    我是一个从农村出来的学生,家里的情况和大多数的农村同学是一样的,家里算不上有钱,父母供我读书,也已经是做到仁至义尽了. 我现在选了,一个和计算机有关的专业---计算机应用技术.就是希望毕业后,可以找到 ...