[LuoguP1462]通往奥格瑞玛的道路($SPFA+$二分)
#\(\mathcal{\color{red}{Description}}\)
有一个图,求其在\(1-N\)的最短路小于一个给定值下,点权最大值的最小值。
#\(\mathcal{\color{red}{Solution}}\)
\(emmm\)这个题也是几天前做的……正在填坑\(qwq\)。
这道题虽然在\(Luogu\)上显示是和\(\color{cyan}{A\ \ Link}\)一个难度的,但是要明显简单很多好不好……
正解的话,很显然要二分一个血量…… 因为二分(答案)是有套路的:
1、求最……的……(一般不可以静态求)
2、求什么就二分什么
3、 一般是反着推,就是用二分出的结果去推条件是否满足,或者状态是否合法
于是,二分交费,然后在\(check\)的时候,由于二分的是最大值,所以比二分的\(x\)大的就不走,小的可以走,以此为限制条件\(SPFA\),观察跑出来的最短路是否大于拥有的血量,大的话自然就不合法,小的话自然合法。然后就做完了\(qwq\)
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#define ll long long
#define to(k) e[k].to
using namespace std ;
const int MAXN = 62050 ;
struct edge{
ll to, next, v ;
}e[MAXN << 1] ;
queue<ll> q ;
ll head[MAXN << 1], cnt, dist[MAXN], i, k, ct ;
ll base[MAXN], l, r, mid, a, b, c, N, M, K, vis[MAXN], now ;
inline void init(){
memset(dist, 0x3f, sizeof(dist)), memset(vis, 0, sizeof(vis)) ;
queue<ll> emt ; swap(q, emt), q.push(1), vis[1] = 1, dist[1] = 0 ;
}
inline bool check(ll x){
init() ;
while(!q.empty()){
now = q.front(), q.pop(), vis[now] = 0 ;
for(k = head[now]; k ; k = e[k].next){
if(base[to(k)] > x) continue ;
if(dist[to(k)] > dist[now] + e[k].v){
dist[to(k)] = dist[now] + e[k].v ;
if(!vis[to(k)]){
vis[to(k)] = 1 ;
q.push(to(k)) ;
}
}
}
}
if(dist[N] > K) return 0 ; return 1 ;
}
inline void add(int u, int v, int w){
e[++cnt].to = v, e[cnt].v = w ;
e[cnt].next = head[u], head[u] = cnt ;
}
int main(){
cin >> N >> M >> K ;
for(i = 1; i <= N; i ++) cin >> base[i] ;
for(i = 1; i <= M; i ++){
cin >> a >> b >> c ;
add(a, b, c), add(b, a, c) ;
}l = 0, r = 1000000000 ;
while(l < r){
mid = (l + r) >> 1 ;
if(check(mid)) r = mid ;
else l = mid + 1 ;
}
if(l == 1000000000) cout << "AFK" ;
else cout << l ;
}
幕后花絮:这个题我特别细心地判了\(-1\),结果让输出\(AFK\)……好吧人生就是这样的跌宕起伏\(ORZ\)……然后现在的我看二分答案就像我当年的我看快速幂一样,绝对不是不会,可以充分体现出我的“OI”思维没有多高……因为常人自然难以理解,\(Coder\)素质越高,理解起来越简单……现在的状态嘛…大概写出一份二分答案来问题不是很大,但是要做到稔熟于心,也还需要一段路要走啊\(qwq\)。
[LuoguP1462]通往奥格瑞玛的道路($SPFA+$二分)的更多相关文章
- luoguP1462通往奥格瑞玛的道路(二分答案+spfa)
题意 给出n个点m条边的无向图. 每条边有两个权值a,b; 问在保证从1到n的路径a权值和小于x时,路径上b权值最大值最小为多少. (n≤10000,m≤50000,x≤1000000000) 题解 ...
- [LuoguP1462]通往奥格瑞玛的道路
题目链接 题意简述:现在有一个图,每经过一个点就会交钱,走一条路就会扣血.在血量>0的前提下,要从1走到n点,并且要求路径上交钱的最大值最小. 解题思路:首先最大值最小,我们选择二分.目前有两个 ...
- 【洛谷】【二分答案+最短路】P1462 通往奥格瑞玛的道路
在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡奥格瑞玛 题目背景 [题目描述:] 在艾泽 ...
- P1462 通往奥格瑞玛的道路
P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...
- 最短路【洛谷P1462】 通往奥格瑞玛的道路
P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...
- 洛谷——P1462 通往奥格瑞玛的道路
P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...
- luogu P1462 通往奥格瑞玛的道路--spfa+二分答案
P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...
- P1462 通往奥格瑞玛的道路(二分答案+最短路)
P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...
- 洛谷P1462 通往奥格瑞玛的道路(二分+spfa,二分+Dijkstra)
洛谷P1462 通往奥格瑞玛的道路 二分费用. 用血量花费建图,用单源最短路判断 \(1\) 到 \(n\) 的最短路花费是否小于 \(b\) .二分时需要不断记录合法的 \(mid\) 值. 这里建 ...
- P1462 通往奥格瑞玛的道路【二分+Dij】
P1462 通往奥格瑞玛的道路 提交 29.89k 通过 6.88k 时间限制 1.00s 内存限制 125.00MB 题目提供者gconeice 难度提高+/省选- 历史分数100 提交记录 查看题 ...
随机推荐
- FineReport中如何自定义登录界面
在登录平台时,不希望使用FR默认的内置登录界面,想通过自定义登录界面实现登录操作,内置登录界面如下图: 登录界面,获取到用户名和密码的值,发送到报表系统,报表服务带着这两个参数访问认证地址进行认证. ...
- ArcEngine9.3迁移至ArcObject10.1
以前写的程序,现在看起来真是相当的青涩,当时写的东西是显得多么地无知啊,很多应该写成一个类,有些需要优化,需要多线程,代码需要加密--总一种想修改的冲动.但这也需要时间和精力.下面准备将原来的程序进行 ...
- Android Dialog的整个生命周期
Activities提供了一种方便管理的创建.保存.回复的对话框机制,例如 onCreateDialog(int), onPrepareDialog(int, Dialog), showDialog( ...
- 【Python】Java程序员学习Python(一)— 为什么学习Python
现在是6月份,毕业快3年了,虽然不能说对Java掌握的程度达到了如火纯青的地步,但是依然感觉到了瓶颈期,Java用的多了,也到了随心所欲的地步了,所以学第二门语言的想法一直在我脑海里闪现,有想法了就要 ...
- 使用Percona MySQL 5.7版本遇到的坑
监控DB由于使用的TokuDB引擎,因此选择使用Percona MySQL 5.7版本,在使用过程中遇到了比较多的坑,在这里做一下简单的记录,希望对广大DBA有帮助. load文件飙升导致的DB雪崩 ...
- Linux tree命令详解
tree: 查看目录结构 tree常见命令参数 usage: tree [-adfghilnpqrstuvxACDFNS] [-H baseHREF] [-T title ] [-L level [- ...
- linux面试总结
一.填空题:1. 在Linux系统中,以 文件 方式访问设备 .2. Linux内核引导时,从文件 /etc/fstab 中读取要加载的文件系统.3. Linux文件系统中每个文件用 i节点 来标识. ...
- PHP安装posix、pctl扩展
安装问题 PHP Fatal error: Uncaught Error: Call to undefined function tsingsun\swoole\server\posix_kill() ...
- "函中函" -------------------- func2(func) -------------- 函数名可以当做函数的参数
def func(): print("吃了么")def func2(fn): print("我是func2") fn() # 执⾏传递过来的fn # 即 fn替 ...
- 函数的调用 and 打印返回值 ret= mai() print(ret)
def mai(): # mai 函数名 (yan) 形式参数 print("老板,给我一包中华") return"给你" # 返回值-- 给你ret = ma ...