loj#2537. 「PKUWC2018」Minimax
题目链接
题解
设\(f_{u,i}\)表示选取i的概率,l为u的左子节点,r为u的子节点
$f_{u,i} = f_{l,i}(p \sum_{j < i} + (1 - p)\sum_{j > i}f_{r,j}) + f_{r,i}(p\sum_{j < i}f_{l,i} + (1 - p)\sum_{j > i}f_{l,j}) $
对于每个节点s维护当前节点所有可能的概率和 ,线段树合并
代码
#include<bits/stdc++.h>
inline int read() {
int x = 0,f = 1;
char c = getchar();
while(c < '0' || c > '9') c = getchar();
while(c <= '9' && c >= '0') x= x * 10 + c - '0',c = getchar();
return x * f;
}
#define LL long long
const int maxn = 300007;
const int mod = 998244353;
const int inv = 796898467;
int a[maxn];
int son[maxn][2], fa[maxn];
int rt[maxn];
int n = 0,m = 0;
LL s[maxn * 20],tag[maxn * 20],w[maxn],b[maxn],p;
int lc[maxn * 20],rc[maxn * 20],tot = 0;
inline void mul(int x,LL t){s[x] = s[x] * t % mod ,tag[x] = tag[x] * t % mod;}
void push_down(int x) {
if(tag[x] == 1) return;
mul(lc[x],tag[x]); mul(rc[x],tag[x]);
tag[x] = 1;
}
void insert(int &x,int l,int r,int rk) {
if(!x) x = ++ tot; s[x] = tag[x] = 1;
if(l == r) return;
int mid = l + r >> 1;
if(rk <= mid) insert(lc[x],l,mid,rk);
else if(rk > mid) insert(rc[x],mid + 1,r,rk);
}
int merge(int x,int y,LL sumx = 0,LL sumy = 0) {
if(!x) {mul(y,sumx);return y;}
if(!y) {mul(x,sumy);return x;}
push_down(x);push_down(y);
LL x0 = s[lc[x]],x1 = s[rc[x]],y0 = s[lc[y]],y1 = s[rc[y]];
lc[x] = merge(lc[x],lc[y],(sumx + (1 + mod - p) * x1) % mod,(sumy + (1 + mod - p) * y1) % mod);
rc[x] = merge(rc[x],rc[y],(sumx + p * x0) % mod,(sumy + p * y0) % mod);
s[x] = (s[lc[x]] + s[rc[x]]) % mod;
return x;
}
int solve(int x) {
if(!son[x][0]) {
insert(rt[x],1,m,std::lower_bound(b + 1,b + m + 1,w[x]) - b);
return rt[x];
}
int rtl = solve(son[x][0]);
if(!son[x][1]) return rtl;
int rtr = solve(son[x][1]);
p = w[x];
return merge(rtl,rtr);
}
LL calc(int x,int l,int r) {
if(l == r) return 1ll * l * b[l] % mod * s[x] % mod * s[x] % mod;
push_down(x);
int mid = l + r >> 1;
return (calc(lc[x],l,mid) + calc(rc[x],mid + 1,r)) % mod;
}
int main() {
n = read();
for(int x,i = 1;i <= n;++ i) {
x = read();
son[x][0] ? son[x][1] = i : son[x][0] = i;
}
for(int i = 1;i <= n;++ i) {
LL x = read();
son[i][0] ? w[i] = x * inv % mod : w[i] = b[++ m] = x;
}
std::sort(b + 1,b + m + 1);
printf("%lld\n",calc(solve(1),1,m)) ;
return 0;
}
loj#2537. 「PKUWC2018」Minimax的更多相关文章
- 【LOJ】#2537. 「PKUWC2018」Minimax
题解 加法没写取模然后gg了QwQ,de了半天 思想还是比较自然的,线段树合并的维护方法我是真的很少写,然后没想到 很显然,我们有个很愉快的想法是,对于每个节点枚举它所有的叶子节点,对于一个叶子节点的 ...
- Loj #2542. 「PKUWC2018」随机游走
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...
- Loj #3044. 「ZJOI2019」Minimax 搜索
Loj #3044. 「ZJOI2019」Minimax 搜索 题目描述 九条可怜是一个喜欢玩游戏的女孩子.为了增强自己的游戏水平,她想要用理论的武器武装自己.这道题和著名的 Minimax 搜索有关 ...
- LOJ #2541「PKUWC2018」猎人杀
这样$ PKUWC$就只差一道斗地主了 假装补题补完了吧..... 这题还是挺巧妙的啊...... LOJ # 2541 题意 每个人有一个嘲讽值$a_i$,每次杀死一个人,杀死某人的概率为$ \fr ...
- LOJ #2542「PKUWC2018」随机游走
$ Min$-$Max$容斥真好用 $ PKUWC$滚粗后这题一直在$ todolist$里 今天才补掉..还要更加努力啊.. LOJ #2542 题意:给一棵不超过$ 18$个节点的树,$ 5000 ...
- LOJ 2542 「PKUWC2018」随机游走 ——树上高斯消元(期望DP)+最值反演+fmt
题目:https://loj.ac/problem/2542 可以最值反演.注意 min 不是独立地算从根走到每个点的最小值,在点集里取 min ,而是整体来看,“从根开始走到点集中的任意一个点就停下 ...
- LOJ 2541 「PKUWC2018」猎人杀——思路+概率+容斥+分治
题目:https://loj.ac/problem/2541 看了题解才会……有三点很巧妙. 1.分母如果变动,就很不好.所以考虑把操作改成 “已经选过的人仍然按 \( w_i \) 的概率被选,但是 ...
- LOJ2537. 「PKUWC2018」Minimax【概率DP+线段树合并】
LINK 思路 首先暴力\(n^2\)是很好想的,就是把当前节点概率按照权值大小做前缀和和后缀和然后对于每一个值直接在另一个子树里面算出贡献和就可以了,注意乘上选最大的概率是小于当前权值的部分,选最小 ...
- loj#2542. 「PKUWC2018」随机游走(MinMax容斥 期望dp)
题意 题目链接 Sol 考虑直接对询问的集合做MinMax容斥 设\(f[i][sta]\)表示从\(i\)到集合\(sta\)中任意一点的最小期望步数 按照树上高斯消元的套路,我们可以把转移写成\( ...
随机推荐
- 信息安全学习笔记--XSS
一.XSS简介 XSS (Cross Site Scripting)是一种经常出现在web应用中的计算机安全漏洞,它允许恶意web用户将代码植入到提供给其它用户使用的页面中.比如这些代码包括HTML代 ...
- gradle 构建工具,与Ant Maven关系
1 基本概念 gradle是一个基于Apache ant 和apache maven概念的项目自动化建构工具.它使用一种基于Groovy的特定领域语言来声明项目设置,而不是传统的xml.当前其支持 ...
- 12 Release History for go go语言的版本历史
Release History Release Policy go1.11 (released 2018/08/24) go1.10 (released 2018/02/16) Minor revis ...
- An overview of gradient descent optimization algorithms (更新到Adam)
Momentum:解快了收敛速度,同时也减弱了SGD的波动 NAG: 减速了Momentum更新参数太快 Adagrad: 出现频率较低参数采用较大的更新,对于出现频率较高的参数采用较小的,不共用一个 ...
- 开发者常用的 Sublime Text 3 插件
1.官网下载 Sublime Text 3 (已有安装包的,请忽略) Sublime Text 官网下载地址 : http://www.sublimetext.com/ 2.打开 Sublime Te ...
- Flask form
用户登录 #!/usr/bin/env python # -*- coding:utf- -*- from flask import Flask, render_template, request, ...
- Java OOM学习
转载自原文: 什么是java OOM?如何分析及解决oom问题? 什么是OOM? OOM,全称"Out Of Memory",翻译成中文就是"内存用完了",表现 ...
- SQLServer 查看备份进度
SELECT DB_NAME(er.[database_id]) [DatabaseName], er.[command] AS [CommandType], er.[percent_comp ...
- SQL行列转换的另一种方法
create table tb(姓名 varchar(10) , 课程 varchar(10) , 分数 int)insert into tb values('张三' , '语文' , 74)inse ...
- MyBatis的动态插入语句(经常报‘无效的列类型’)
最近在工作中经常遇到一个情况:通过mybatis的标签执行插入语句,当表中字段比较多的时候,需要全部插入,而有时候的需求是只插入其中几个字段,但是会报错. 原来的语句,必须把所有字段都Set值. &l ...