This short tutorial shows how to compute Fisher vector and VLAD encodings with VLFeat MATLAB interface.

These encoding serve a similar purposes: summarizing in a vectorial statistic a number of local feature descriptors (e.g. SIFT). Similarly to bag of visual words, they assign local descriptor to elements in a visual dictionary, obtained with vector quantization (KMeans) in the case of VLAD or a Gaussian Mixture Models for Fisher Vectors. However, rather than storing visual word occurrences only, these representations store a statistics of the difference between dictionary elements and pooled local features.

Fisher encoding

The Fisher encoding uses GMM to construct a visual word dictionary. To exemplify constructing a GMM, consider a number of 2 dimensional data points (see also the GMM tutorial). In practice, these points would be a collection of SIFT or other local image features. The following code fits a GMM to the points:

numFeatures = 5000 ;
dimension = 2 ;
data = rand(dimension,numFeatures) ; numClusters = 30 ;
[means, covariances, priors] = vl_gmm(data, numClusters);

Next, we create another random set of vectors, which should be encoded using the Fisher Vector representation and the GMM just obtained:

numDataToBeEncoded = 1000;
dataToBeEncoded = rand(dimension,numDataToBeEncoded);

The Fisher vector encoding enc of these vectors is obtained by calling the vl_fisher function using the output of the vl_gmm function:

encoding = vl_fisher(datatoBeEncoded, means, covariances, priors);

The encoding vector is the Fisher vector representation of the data dataToBeEncoded.

Note that Fisher Vectors support several normalization options that can affect substantially the performance of the representation.

VLAD encoding

The Vector of Linearly Agregated Descriptors is similar to Fisher vectors but (i) it does not store second-order information about the features and (ii) it typically use KMeans instead of GMMs to generate the feature vocabulary (although the latter is also an option).

Consider the same 2D data matrix data used in the previous section to train the Fisher vector representation. To compute VLAD, we first need to obtain a visual word dictionary. This time, we use K-means:

numClusters = 30 ;
centers = vl_kmeans(dataLearn, numClusters);

Now consider the data dataToBeEncoded and use the vl_vlad function to compute the encoding. Differently from vl_fishervl_vlad requires the data-to-cluster assignments to be passed in. This allows using a fast vector quantization technique (e.g. kd-tree) as well as switching from soft to hard assignment.

In this example, we use a kd-tree for quantization:

kdtree = vl_kdtreebuild(centers) ;
nn = vl_kdtreequery(kdtree, centers, dataEncode) ;

Now we have in the nn the indexes of the nearest center to each vector in the matrix dataToBeEncoded. The next step is to create an assignment matrix:

assignments = zeros(numClusters,numDataToBeEncoded);
assignments(sub2ind(size(assignments), nn, 1:length(nn))) = 1;

It is now possible to encode the data using the vl_vlad function:

enc = vl_vlad(dataToBeEncoded,centers,assignments);

Note that, similarly to Fisher vectors, VLAD supports several normalization options that can affect substantially the performance of the representation.

from: http://www.vlfeat.org/overview/encodings.html

计算Fisher vector和VLAD的更多相关文章

  1. Fisher Vector Encoding and Gaussian Mixture Model

    一.背景知识 1. Discriminant  Learning Algorithms(判别式方法) and Generative Learning Algorithms(生成式方法) 现在常见的模式 ...

  2. 【CV知识学习】Fisher Vector

    在论文<action recognition with improved trajectories>中看到fisher vector,所以学习一下.但网上很多的资料我觉得都写的不好,查了一 ...

  3. Fisher vector for image classification

    http://files.cnblogs.com/files/sylar120/fisher_vector.rar 拿各个参数上的偏导作为特征

  4. VLAD算法浅析, BOF、FV比较

    划重点 ================================================= BOF.FV.VLAD等算法都是基于特征描述算子的特征编码算法,关于特征描述算子是以SIFT ...

  5. 转 STL之vector的使用

    http://www.cnblogs.com/caoshenghe/archive/2010/01/31/1660399.html 第一部分 使用入门 vector可用于代替C中的数组,或者MFC中的 ...

  6. Aggregating local features for Image Retrieval

    Josef和Andrew在2003年的ICCV上发表的论文[10]中,将文档检索的方法借鉴到了视频中的对象检测中.他们首先将图像的特征描述类比成单词,并建立了基于SIFT特征的vusual word ...

  7. 残差网络resnet学习

    Deep Residual Learning for Image Recognition 微软亚洲研究院的何凯明等人 论文地址 https://arxiv.org/pdf/1512.03385v1.p ...

  8. Resnet论文翻译

    摘要 越深层次的神经网络越难以训练.我们提供了一个残差学习框架,以减轻对网络的训练,这些网络的深度比以前的要大得多.我们明确地将这些层重新规划为通过参考输入层x,学习残差函数,来代替没有参考的学习函数 ...

  9. 图像检索(1): 再论SIFT-基于vlfeat实现

    概述 基于内容的图像检索技术是采用某种算法来提取图像中的特征,并将特征存储起来,组成图像特征数据库.当需要检索图像时,采用相同的特征提取技术提取出待检索图像的特征,并根据某种相似性准则计算得到特征数据 ...

随机推荐

  1. kvm图形化管理工具

    1丶windows环境下载安装以及运行xming软件 https://xming.en.softonic.com/ 链接:https://pan.baidu.com/s/1wMb2pK4WfCilS8 ...

  2. 关于JavaScript变量提升

    请看如下代码: console.log(a); var a = 2; 输入结果会是什么?  请说出理由 可能会有三种答案: 1.2 2.抛出ReferenceError异常 3.undifined 对 ...

  3. Python并发编程-IO模型-IO多路复用实现SocketServer

    Server.py import select import socket sk = socket.socket() sk.bind(('127.0.0.1',8080)) sk.setblockin ...

  4. Django项目从零开始的大概脉络

    Django项目从零开始脉络 创建虚拟环境,隔离项目python环境:mkvirtualenv -p /usr/bin/python3.6 envname 安装Django:pip install d ...

  5. 【基础知识】winfrom窗体的属性

    窗体的属性: Icon:窗体的右上角图标 FormBoarderStyle:窗体的边线样式 MaximizeBox: 最大化按钮是否可用 MinimizeBox:最小化按钮是否可用 Opacity:透 ...

  6. 【SQL】183. Customers Who Never Order

    Suppose that a website contains two tables, the Customers table and the Orders table. Write a SQL qu ...

  7. CodeForces1082G Petya and Graph 最小割

    网络流裸题 \(s\)向点连边\((s, i, a[i])\) 给每个边建一个点 边\((u, v, w)\)抽象成\((u, E, inf)\)和\((v, E, inf)\)以及边\((E, t, ...

  8. luoguP3507 [POI2010]GRA 性质 + 动态规划

    题目大意: 给定\(n\)个正整数,\(a, b\)两个人轮流取,\(a\)先手 每次可以取任意多的数,直到取完,每次的得分为取的数中的最小值 \(a, b\)都会使自己的得分减去对手的得分更大,询问 ...

  9. 和程序有关的一个游戏<<mu complex>> 攻略

    最速打法: 1 - login, brucedayton 2 - login, allomoto 3 - login, m3g4pa55word 4 - unlock, 03/18/34 5 - ss ...

  10. Vue集成微信开发趟坑:公众号以及JSSDK相关

    首先,类库方面,Vue中引入JSSDK的话,请引入weixin-js-sdk,而不是weixin-jsapi,原因在于weixin-jsapi不是最新版:还要注意JS接口安全域名,不需要http前缀, ...