数学图形之莫比乌斯带(mobius)
莫比乌斯带,又被译作:莫比斯环,梅比斯環或麦比乌斯带.是一种拓扑学结构,它只有一个面(表面),和一个边界.即它的正反两面在同一个曲面上,左右两个边在同一条曲线上.看它的名字很洋气,听它的特征很玄乎,实际上实现起来很容易,就是将一个纸条拧一下,然后粘起两头,所生成的带.公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质。普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。这种纸带被称为“莫比乌斯带”。
下面将展示几种莫比乌斯带的生成算法和切图,使用自己定义语法的脚本代码生成数学图形.相关软件参见:数学图形可视化工具,该软件免费开源.
(1)
vertices = D1: D2:
u = from to (*PI) D1
v = from - to D2 a = sin(u)
b = cos(u) c = sin(u/)
d = cos(u/) r = 5.0
m = 0.2 x = r*( + v*m*d)*b
y = r*( + v*m*d)*a
z = r*v*m*c

(2)
vertices = D1: D2:
u = from to (*PI) D1
v = from - to D2 r = x = r*( + v*cos(u/))*cos(u)
y = r*( + v*cos(u/))*sin(u)
z = r*v*sin(u/)

(3)
#http://www.mathcurve.com/surfaces/mobius/mobius.shtml vertices = D1: D2:
t = from to (*PI) D1
r = from 0.6 to D2 s = sin(t)
c = cos(t) x = [*r*r*(r*r - ) - *r*( + pow(r, ))*c + (pow(r, ) - )*(*c*c - )]*s / (*r*r*r)
y = [*( - pow(r, ))*pow(c,) - *r*( + pow(r, )) + *(r*r - )*( + pow(r, ))*c + *r*( + pow(r, ))*c*c] / (*r*r*r)
z = *s*(r*r - )/r

(4)
#http://www.mathcurve.com/surfaces/mobiussurface/mobiussurface.shtml
vertices = D1: D2:
u = from (-) to () D1
v = from to (PI*) D2
a = rand2(, )
x = (a + u*cos(v/))*cos(v)
z = (a + u*cos(v/))*sin(v)
y = u*sin(v/)

(5)
将一个纸条拧一下,然后粘起两头会得到莫比乌斯带,那么拧上N圈呢?
vertices = D1: D2:
u = from to (*PI) D1
v = from - to D2
r =
n =
x = r*( + v*cos(n*u))*cos(u)
z = r*( + v*cos(n*u))*sin(u)
y = r*v*sin(u/)

数学图形之莫比乌斯带(mobius)的更多相关文章
- 神奇的莫比乌斯带(mobius)
1.禅师和青年之间的对话 2.制作一个莫比乌斯带 3.神奇的莫比乌斯带 4.对莫比乌斯带进行简单的数学建模 1.禅师和青年之间的对话 青年问禅师:“大师,我很爱我的女朋友,她也有很多优点,但是总有几个 ...
- 数学图形之克莱因瓶(klein bottle)
克莱因瓶是一种内外两面在同一个曲面上的图形. 在数学领域中,克莱因瓶(德语:Kleinsche Flasche)是指一种无定向性的平面,比如二维平面,就没有“内部”和“外部”之分.克莱因瓶最初的概念提 ...
- WHY数学图形可视化工具(开源)
WHY数学图形可视化工具 软件下载地址:http://files.cnblogs.com/WhyEngine/WhyMathGraph.zip 源码下载地址: http://pan.baidu.com ...
- 数学图形(1.49)Nephroid曲线
昨天IPhone6在国内发售了,我就顺手发布个关于肾的图形.Nephroid中文意思是肾形的.但是这种曲线它看上去却不像个肾,当你看到它时,你觉得它像什么就是什么吧. The name nephroi ...
- 数学图形(1.48)Cranioid curve头颅线
这是一种形似乎头颅的曲线.这种曲线让我想起读研的时候,搞的医学图像三维可视化.那时的原始数据为脑部CT图像.而三维重建中有一种方式是面绘制,是将每一幅CT的颅骨轮廓提取出来,然后一层层地罗列在一起,生 ...
- 数学图形之贝塞尔(Bézier)曲面
前面章节中讲了贝塞尔(Bézier)曲线,而贝塞尔曲面是对其多一个维度的扩展.其公式依然是曲线的公式: . 而之所以由曲线变成曲面,是将顶点横向连了再纵向连. 很多计算机图形学的教程都会有贝塞尔曲面的 ...
- 数学图形(1.47)贝塞尔(Bézier)曲线
贝塞尔曲线又称贝兹曲线或贝济埃曲线,是由法国数学家Pierre Bézier所发现,由此为计算机矢量图形学奠定了基础.它的主要意义在于无论是直线或曲线都能在数学上予以描述. 上一节讲的是高次方程曲线, ...
- 数学图形之Breather surface
这是一种挺漂亮的曲面图形,可惜没有找到太多的相关解释. In differential equations, a breather surface is a mathematical surface ...
- 数学图形之Kuen Surface
Kuen Surface应该又是一个以数学家名字命名的曲面.本文将展示几种Kuen Surface的生成算法和切图,其中有的是标准的,有的只是相似.使用自己定义语法的脚本代码生成数学图形.相关软件参见 ...
随机推荐
- 评分卡模型中的IV和WOE详解
1.IV的用途 IV的全称是Information Value,中文意思是信息价值,或者信息量. 我们在用逻辑回归.决策树等模型方法构建分类模型时,经常需要对自变量进行筛选.比如我们有200个候选 ...
- thinkphp3.2自动生成模块BIND_MODULE
thinphp3.2中提供了自定义生成模块与控制器的常量,分别是BIND_MODULE,BUILD_CONTROLLER_LIST 在 index.php 文件中定义 BIND_MODULE,BUIL ...
- 【记录】HTTP协议状态码含义
状态码200-299之间的状态码表示成功300-399之间的代码表示资源已经被移走400-499之间的代码表示客户端的请求出错500-599之间的代码表示服务器出错了
- react篇章-React State(状态)-组件都是真正隔离的
<!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> <title&g ...
- 命令:less
与more的区别 more在man手册中的英文原文是文件熟读过滤器(file perusal filter),其实可以理解为一种文本查看器. 它存在一些缺点: 必须事先加载完整个文件.因此在遇到大文件 ...
- python 与 mongodb的交互---查找
python与mongo数据库交互时,在查找的时候注意的一些小问题: 代码: from pymongo import * def find_func(): #创建连接对象 client = Mongo ...
- 减少TIME_WAIT连接状态
减少TIME_WAIT连接状态.网络上已经有不少相关的介绍,大多是建议: shell> sysctl net.ipv4.tcp_tw_reuse=1 shell> sysctl net.i ...
- springBoot application.properties 基础配置
# 文件编码 banner.charset= UTF-8 # 文件位置 banner.location= classpath:banner.txt # 日志配置 # 日志配置文件的位置. 例如对于Lo ...
- 【洛谷】4180:【模板】严格次小生成树[BJWC2010]【链剖】【线段树维护最大、严格次大值】
P4180 [模板]严格次小生成树[BJWC2010] 题目描述 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说, ...
- UOJ #17. 【NOIP2014】飞扬的小鸟 背包DP
#17. [NOIP2014]飞扬的小鸟 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4902 Solved: 1879 题目连接 http:// ...