题目大意:给你一个长度为$n$的序列$s$。$Q$个询问,问在$s$中的左端点在$[a,b]$之间,右端点在$[c,d]$之间的子段中,最大的中位数。 强制在线。

题解:区间中位数?二分答案,如果询问区间是给定的,对于每个询问,二分答案是多少,然后只要求出这个区间中有多少个数比二分的数大就行了,这就可以对每一个值建一棵主席树,把比它小的赋成$-1$,大于等于的赋成$1$,只需要区间和,就可以在$O(\log_2 n)$的时间判断一个解了。

但区间不给定。怎么办?注意到,$[b+1,c-1]$的值是必选的。所以一下这个区间的和是一定会产生贡献的。

而对于$[a,b],[c,d]$,因为要让中位数尽可能的大。所以,要让这里面的数比二分的答案大的数尽可能多。

也就是说,需要找一个$[a,b]$的最大后缀和,$[c,d]$的最大前缀和。这三个值的和就是给的询问中所有字段中对于二分的答案的最大的值了(也就是比二分答案大的数的个数减去比二分答案小的数的个数),也就是最优解。

问题是,我们二分的中位数不一定在询问的范围当中,会不会最后的答案不在这个区间内呢? 其实是不会的,如果区间外有个数满足要求,那么区间内一定会有个数大于等于它,显然区间内的那个数最优,而且也是满足中位数的要求的

卡点:1.求区间最大前缀和以及区间最大后缀和的线段树(主席树),的判断返回值条件和分治方法和普通的不同,而我按普通的在写

  2.我二分的答案是这个数是所有数中第几大的,然后就把$lastans$赋成了这个(应该赋成这个数是多少)

  3.洛谷有锅,一模一样的代码在洛谷上$30$[点击查看],在$darkbzoj$和$bzoj$上$AC$[点击查看](虽然后来也在洛谷上过了。。。。)

C++ Code:

#include <cstdio>
#include <algorithm>
#define maxn 200100
#define N 3001500
using namespace std;
int root[maxn], lc[N], rc[N];
int idx;
bool flag;
struct node {
int r, sum, l; //r后缀,l前缀
inline bool operator == (node rhs) {return (r == rhs.r && sum == rhs.sum && l == rhs.l);}
} V[N], err; int n, Q, s[maxn], rnk[maxn];
int p[5], lastans = 0, ans; inline bool cmp(int a, int b) {return s[a] < s[b];}
inline int max(int a, int b) {return a > b ? a : b;} void update(int rt) {
V[rt].r = max(V[rc[rt]].r, V[rc[rt]].sum + V[lc[rt]].r);
V[rt].l = max(V[lc[rt]].l, V[lc[rt]].sum + V[rc[rt]].l);
V[rt].sum = V[lc[rt]].sum + V[rc[rt]].sum;
}
void build(int &rt, int l, int r) {
rt = ++idx;
if (l == r) {
V[rt].r = V[rt].sum = V[rt].l = 1;
return ;
}
int mid = l + r >> 1;
build(lc[rt], l, mid);
build(rc[rt], mid + 1, r);
update(rt);
}
void add(int &rt, int l, int r, int p) {
lc[++idx] = lc[rt], rc[idx] = rc[rt], rt = idx;
if (l == r) {
V[rt].r = V[rt].sum = V[rt].l = -1;
return ;
}
int mid = l + r >> 1;
if (p <= mid) add(lc[rt], l, mid, p);
else add(rc[rt], mid + 1, r, p);
update(rt);
}
int a, b, c, d;
node ask(int rt, int l, int r, int L, int R) {
if (!rt || l > r || L > R) return err;
if (L == l && R == r) return V[rt];
int mid = l + r >> 1;
if (R <= mid) return ask(lc[rt], l, mid, L, R);
if (L > mid) return ask(rc[rt], mid + 1, r, L, R);
node ans = ask(lc[rt], l, mid, L, mid), tmp = ask(rc[rt], mid + 1, r, mid + 1, R);
ans.l = max(ans.l, ans.sum + tmp.l);
ans.r = max(tmp.r, tmp.sum + ans.r);
ans.sum = ans.sum + tmp.sum;
return ans;
}
bool check(int mid) {
int tmp = ask(root[mid], 1, n, a, b).r + ask(root[mid], 1, n, b + 1, c - 1).sum + ask(root[mid], 1, n, c, d).l;
return tmp >= 0;
}
int main() {
scanf("%d", &n);
build(root[1], 1, n);
for (int i = 1; i <= n; i++) scanf("%d", &s[i]), rnk[i] = i;
sort(rnk + 1, rnk + n + 1, cmp);
for (int i = 2; i <= n; i++) {
root[i] = root[i - 1];
add(root[i], 1, n, rnk[i - 1]);
}
scanf("%d", &Q);
while (Q --> 0) {
scanf("%d%d%d%d", &a, &b, &c, &d);
p[0] = (a + lastans) % n + 1, p[1] = (b + lastans) % n + 1, p[2] = (c + lastans) % n + 1, p[3] = (d + lastans) % n + 1;
sort(p, p + 4);
a = p[0], b = p[1], c = p[2], d = p[3];
int L = 1, R = n;
while (L <= R) {
int mid = L + R + 1 >> 1;
if (check(mid)) {
L = mid + 1;
ans = mid;
} else R = mid - 1;
}
printf("%d\n", s[rnk[ans]]);
lastans = s[rnk[ans]];
}
return 0;
}

  

[洛谷P2839][国家集训队]middle的更多相关文章

  1. 洛谷P2839 [国家集训队]middle 主席树_二分

    Code: #include <cstdio> #include <algorithm> #include <cstring> #include <strin ...

  2. [洛谷2839/国家集训队]middle

    Description 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整.给你一个长度为n的序列s.回答Q个这样的询问:s的左端点在[a,b]之 ...

  3. P2839 [国家集训队]middle

    P2839 [国家集训队]middle 好妙的题啊,,,, 首先二分一个答案k,把数列里>=k的数置为1,=0就是k>=中位数,<0就是k<中位数 数列的最大和很好求哇 左边的 ...

  4. 模板—点分治A(容斥)(洛谷P2634 [国家集训队]聪聪可可)

    洛谷P2634 [国家集训队]聪聪可可 静态点分治 一开始还以为要把分治树建出来……• 树的结构不发生改变,点权边权都不变,那么我们利用刚刚的思路,有两种具体的分治方法.• A:朴素做法,直接找重心, ...

  5. [洛谷P1527] [国家集训队]矩阵乘法

    洛谷题目链接:[国家集训队]矩阵乘法 题目背景 原 <补丁VS错误>请前往P2761 题目描述 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. 输入输出格式 输入 ...

  6. 洛谷P1501 [国家集训队]Tree II(LCT,Splay)

    洛谷题目传送门 关于LCT的其它问题可以参考一下我的LCT总结 一道LCT很好的练习放懒标记技巧的题目. 一开始看到又做加法又做乘法的时候我是有点mengbi的. 然后我想起了模板线段树2...... ...

  7. 洛谷P2619 [国家集训队2]Tree I(带权二分,Kruscal,归并排序)

    洛谷题目传送门 给一个比较有逼格的名词--WQS二分/带权二分/DP凸优化(当然这题不是DP). 用来解决一种特定类型的问题: 有\(n\)个物品,选择每一个都会有相应的权值,需要求出强制选\(nee ...

  8. 洛谷 P1407 [国家集训队]稳定婚姻 解题报告

    P1407 [国家集训队]稳定婚姻 题目描述 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. 25岁的 ...

  9. 洛谷 P1852 [国家集训队]跳跳棋 解题报告

    P1852 [国家集训队]跳跳棋 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\), ...

随机推荐

  1. javaScript函数封装

    本篇封装了一些常用的函数,兼容IE8及以下的浏览器,怪异模式. 按需加载loadScript().绑定事件处理函数addEvet().查看滚动尺寸getScrollOffset().查看可视区窗口尺寸 ...

  2. php+高德地图webapi 高德jsapi 实现 当前位置与目标位置距离 并按照距离排序(坐标逆转换)

    <script type="text/javascript" src="https://api.map.baidu.com/api?v=2.0&ak='自己 ...

  3. YII2 多MongoDB配置和使用

    1:在config/web.php 文件下配置多个连接即可: 注意在componets 下 'mongodb' => [ 'class' => '\yii\mongodb\Connecti ...

  4. JavaSE库存管理系统项目实战

    需求分析 企业库房用于存放成品.半成品.原材料.工具等物资,一般情况下,这些物资统称为物料.库存管理常见业务包括物资的入库.出库.盘点.退货.报废以及财务核算等,业务逻辑比较复杂,库房信息系统项目开发 ...

  5. Python学习 :格式化输出

    方式一:使用占位符 % 常用占位符:% s   (s = string 字符串)     % d   (d = digit 整数(十进制))   %  f   ( f = float  浮点数) na ...

  6. R语言学习笔记(十三):零碎知识点(36-40)

    36--diag() 如果它的参数是一个矩阵,它返回的是一个向量 如果它的参数是一个向量,它返回的是一个向量 如果它的参数是一个标量,它返回的是指定大小的单位矩阵 > diag(2) [,1] ...

  7. LINQ查询操作符

    ·First - 返回集合中的第一个元素:不延迟 ·FirstOrDefault - 返回集合中的第一个元素(如果没有则返回默认值):不延迟 ·Last - 返回集合中的最后一个元素:不延迟 ·Las ...

  8. Python的入坑之路(1)

    (故事背景:由于涉及到机密的原因,暂时不方便透露,待后期再写.) 国庆长假过完之后,回来上班第二天下午,Boss跟龙哥把我叫了出去,问我要不要转人工智能.一脸懵逼的我,带着一脸懵逼听Boss说人工智能 ...

  9. Returning Values from Bash Functions

    转自:https://www.linuxjournal.com/content/return-values-bash-functions Bash functions, unlike function ...

  10. selenium自动化登录qq网页

    一个简单的登录网页上qq的脚本,通过此脚本了解到有些位置是无法通过xpath来定位的反倒是By定位更方便 #encoding=utf-8 from selenium import webdriver ...