E. Okabe and El Psy Kongroo
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Okabe likes to take walks but knows that spies from the Organization could be anywhere; that's why he wants to know how many different walks he can take in his city safely. Okabe's city can be represented as all points (x, y) such that x and y are non-negative. Okabe starts at the origin (point (0, 0)), and needs to reach the point (k, 0). If Okabe is currently at the point (x, y), in one step he can go to (x + 1, y + 1), (x + 1, y), or (x + 1, y - 1).

Additionally, there are n horizontal line segments, the i-th of which goes from x = ai to x = bi inclusive, and is at y = ci. It is guaranteed that a1 = 0, an ≤ k ≤ bn, and ai = bi - 1 for 2 ≤ i ≤ n. The i-th line segment forces Okabe to walk with y-value in the range 0 ≤ y ≤ ci when his xvalue satisfies ai ≤ x ≤ bi, or else he might be spied on. This also means he is required to be under two line segments when one segment ends and another begins.

Okabe now wants to know how many walks there are from the origin to the point (k, 0) satisfying these conditions, modulo 109 + 7.

Input

The first line of input contains the integers n and k (1 ≤ n ≤ 100, 1 ≤ k ≤ 1018) — the number of segments and the destination xcoordinate.

The next n lines contain three space-separated integers aibi, and ci (0 ≤ ai < bi ≤ 1018, 0 ≤ ci ≤ 15) — the left and right ends of a segment, and its y coordinate.

It is guaranteed that a1 = 0, an ≤ k ≤ bn, and ai = bi - 1 for 2 ≤ i ≤ n.

Output

Print the number of walks satisfying the conditions, modulo 1000000007 (109 + 7).

Examples
input
1 3
0 3 3
output
4
input
2 6
0 3 0
3 10 2
output
4
Note

The graph above corresponds to sample 1. The possible walks are:

The graph above corresponds to sample 2. There is only one walk for Okabe to reach (3, 0). After this, the possible walks are:

题目链接:CF 821E

很好的一道题,用dp[x][y]表示到坐标$(x,y)$的方案数,容易可以想到简单的递推:$dp[x][y]=dp[x-1][y]+dp[x-1][y-1]+dp[x-1][y+1]$,但是由于x太大不能直接写dp,看这个式子,发现当前的dp[x]只跟dp[x-1]有关系,因此实际上只需要两个一维数组就可以完成这种迭代,那如何加速迭代呢?用矩阵快速幂,把dp[x-1][y]放到矩阵A的第一行,dp[x][y]显然是转移之后的矩阵A的第一行,如何转移?y从上一次的y-1,y+1,y进行转移,因此构造中间矩阵B,B[i][j]=i走到j是否可行,然后一条线段一条线段地进行转移,当上一次转移线段的高度为3,当前线段高度为2,那显然3这个高度已经越界了,因此转移之前要把A矩阵的越界位置方案数置0,然后用当前的高度作为行数进行转移,否则会多算,最后注意一下长度不能超过k,不然也会多算

代码:

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <bitset>
#include <string>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define fin(name) freopen(name,"r",stdin)
#define fout(name) freopen(name,"w",stdout)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 110;
const int M = 16;
const LL mod = 1000000007LL;
int row;
struct Mat
{
LL A[M][M];
void zero()
{
CLR(A, 0);
}
Mat operator*(Mat b)
{
Mat c;
c.zero();
for (int i = 0; i < row; ++i)
{
for (int k = 0; k < row; ++k)
{
if (A[i][k])
{
for (int j = 0; j < row; ++j)
{
if (b.A[k][j])
c.A[i][j] = (c.A[i][j] + A[i][k] * b.A[k][j]) % mod;
}
}
}
}
return c;
}
friend Mat operator^(Mat a, LL b)
{
Mat r;
r.zero();
for (int i = 0; i < row; ++i)
r.A[i][i] = 1;
while (b)
{
if (b & 1)
r = r * a;
a = a * a;
b >>= 1;
}
return r;
}
};
LL a[N], b[N];
int c[N]; int main(void)
{
int n, i, j;
LL k;
while (~scanf("%d%I64d", &n, &k))
{
for (i = 0; i < n; ++i)
scanf("%I64d%I64d%d", &a[i], &b[i], &c[i]);
if (b[n - 1] > k)
b[n - 1] = k;
Mat A,B;
A.zero();
A.A[0][0] = 1;
B.zero();
for (j = 0; j <= 15; ++j) //列
{
B.A[j][j] = 1;
if (j - 1 >= 0)
B.A[j][j - 1] = 1;
if (j + 1 <= 15)
B.A[j][j + 1] = 1;
}
for (i = 0; i < n; ++i)
{
row = c[i] + 1;
for (j = c[i] + 1; j < M; ++j)
A.A[0][j] = 0;
A = A * (B ^ (b[i] - a[i]));
}
printf("%I64d\n", A.A[0][0]);
}
return 0;
}

Codeforces 821E Okabe and El Psy Kongroo(矩阵快速幂)的更多相关文章

  1. Codeforces Round #420 (Div. 2) E. Okabe and El Psy Kongroo 矩阵快速幂优化dp

    E. Okabe and El Psy Kongroo time limit per test 2 seconds memory limit per test 256 megabytes input ...

  2. CF821 E. Okabe and El Psy Kongroo 矩阵快速幂

    LINK 题意:给出$n$条平行于x轴的线段,终点$k$坐标$(k <= 10^{18})$,现在可以在线段之间进行移动,但不能超出两条线段的y坐标所夹范围,问到达终点有几种方案. 思路:刚开始 ...

  3. Codeforces 821E Okabe and El Psy Kongroo

    题意:我们现在位于(0,0)处,目标是走到(K,0)处.每一次我们都可以从(x,y)走到(x+1,y-1)或者(x+1,y)或者(x+1,y+1)三个位子之一.现在一共有N段线段,每条线段都是平行于X ...

  4. codeforces E. Okabe and El Psy Kongroo(dp+矩阵快速幂)

    题目链接:http://codeforces.com/contest/821/problem/E 题意:我们现在位于(0,0)处,目标是走到(K,0)处.每一次我们都可以从(x,y)走到(x+1,y- ...

  5. Codeforces Round #420 (Div. 2) E. Okabe and El Psy Kongroo DP+矩阵快速幂加速

    E. Okabe and El Psy Kongroo     Okabe likes to take walks but knows that spies from the Organization ...

  6. Codeforces Round #420 (Div. 2) E. Okabe and El Psy Kongroo dp+矩阵快速幂

    E. Okabe and El Psy Kongroo   Okabe likes to take walks but knows that spies from the Organization c ...

  7. CF821E 【Okabe and El Psy Kongroo】

    首先我们从最简单的dp开始 \(dp[i][j]=dp[i-1][j]+dp[i-1][j+1]+dp[i-1][j-1]\) 然后这是一个O(NM)的做法,肯定行不通,然后我们考虑使用矩阵加速 \( ...

  8. [codeforces821E]Okabe and El Psy Kongroo

    题意:(0,0)走到(k,0),每一部分有一条线段作为上界,求方案数. 解题关键:dp+矩阵快速幂,盗个图,注意ll 关于那条语句为什么不加也可以,因为我的矩阵C,就是因为多传了了len的原因,其他位 ...

  9. Educational Codeforces Round 13 D. Iterated Linear Function (矩阵快速幂)

    题目链接:http://codeforces.com/problemset/problem/678/D 简单的矩阵快速幂模版题 矩阵是这样的: #include <bits/stdc++.h&g ...

随机推荐

  1. Co. - VMware - vSphere

    VMware vSphere 组件 VMware vSphere是VMware推出的基于云计算的新一代数据中心虚拟化套件,它由VMware ESXi.VMware vCenter Server.VMw ...

  2. SQL中EXCEPT函数在 Mysql 和 sqlServer 中的替代方法

    示例摘自:极客代码:http://wiki.jikexueyuan.com/project/sql/useful-functions/except-clause.html EXCEPT 子句 EXCE ...

  3. HDSF读写文件

    HDFS 读取文件 HDFS的文件读取原理,主要包括以下几个步骤: 1.首先调用FileSystem对象的open方法,其实获取的是一个DistributedFileSystem的   实例. 2.D ...

  4. python -pickle模块、re模块学习

    pickel模块 import pickle #pickle可以将任何数据类型序列化,json只能列表字典字符串数字等简单的数据类型,复杂的不可以 #但是pickle只能在python中使用,json ...

  5. cf776D Mahmoud and a Dictionary

    Mahmoud wants to write a new dictionary that contains n words and relations between them. There are ...

  6. WebSocket 的使用

    Java 控制台程序实现类似广播功能 服务器端代码 添加 maven 依赖 <dependency> <groupId>javax.websocket</groupId& ...

  7. Verilog 初级入门概念

    首先我们要理解两种变量类型 Net Type(连线型)和 Register Type (寄存器型): Net Type(连线型),从名字上理解就是“导线”呗,导线的这头和导线的另一头始终是直接连通的, ...

  8. FIFO的使用场景

    (1) 数据的缓冲.如模型图所示,如果数据的写入速率高,但间隔大,且会有突发;读出速率小,但相对均匀.则通过设置相应深度的FIFO,可以起到数据暂存的功能,且能够使后续处理流程平滑,避免前级突发时,后 ...

  9. JAVA大作业汇总1

    JAVA大作业 代码 ``` package thegreatwork; import javafx.application.; import javafx.scene.control.; impor ...

  10. 初步学习pg_control文件之三

    接前文,初步学习pg_control文件之二 继续学习: 研究 DBState,先研究 DB_IN_PRODUCTION ,看它如何出现: 它出现在启动Postmaster时运行的函数处: /* * ...