素数必然符合题意。

对于合数,如若它是某个素数x的k次方(k为某个素数y减去1),一定不符合题意。只需找出这些数。

由约数个数定理,其他合数一定符合题意。

就从小到大枚举素数,然后把它的素数-1次方都排除即可。

#include<cstdio>
#include<cmath>
using namespace std;
#define MAXP 1000100
#define EPS 0.00000001
typedef long long ll;
ll L,R;
bool isNotPrime[MAXP+10];
int num_prime,prime[MAXP+10];
void shai()
{
for(long i = 2 ; i < MAXP ; i ++)
{
if(! isNotPrime[i])
prime[num_prime ++]=i;
for(long j = 0 ; j < num_prime && i * prime[j] < MAXP ; j ++)
{
isNotPrime[i * prime[j]] = 1;
if( !(i % prime[j]))
break;
}
}
}
int main()
{
scanf("%I64d%I64d",&L,&R);
shai();
int sum=0;
for(int i=0;i<num_prime;++i)
{
ll t=(ll)prime[i];
for(int j=1;;++j)
{
bool flag=1;
for(int k=prime[j-1];k<prime[j];++k)
{
if(log(t)+log(prime[i])-log(R)>EPS)
{
flag=0;
break;
}
t*=(ll)prime[i];
}
if(!flag)
break;
if(t>=L)
++sum;
}
}
printf("%I64d\n",R-L+1ll-(ll)sum);
return 0;
}

【线性筛】【筛法求素数】【约数个数定理】URAL - 2070 - Interesting Numbers的更多相关文章

  1. <转载>一般筛法和快速线性筛法求素数

    素数总是一个比较常涉及到的内容,掌握求素数的方法是一项基本功. 基本原则就是题目如果只需要判断少量数字是否为素数,直接枚举因子2 ..N^(0.5) ,看看能否整除N. 如果需要判断的次数较多,则先用 ...

  2. 【搜索】【约数个数定理】[HAOI2007]反素数ant

    对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数. 所以,n以内的反质数即为不超过n的 ...

  3. Algorithm --> 筛法求素数

    一般的线性筛法 genPrime和genPrime2是筛法求素数的两种实现,一个思路,表示方法不同而已. #include<iostream> #include<math.h> ...

  4. 初等数论-Base-1(筛法求素数,欧拉函数,欧几里得算法)

    前言 初等数论在OI中应用的基础部分,同机房的AuSquare和zhou2003君早就写完了,一直划水偷懒的Hk-pls表示很方,这才开始了这篇博客. \(P.S.\)可能会分部分发表. Base-1 ...

  5. 【BZOJ 2818】Gcd - 筛法求素数&phi()

    题目描述 给定整数,求且为素数的数对有多少对. 分析 首先筛出所有的素数. 我们考虑枚举素数p,统计满足的个数,等价于统计的个数,即统计以内满足互质的有序数对个数. 不难发现,也就是说,我们只要预处理 ...

  6. 2018牛客网暑期ACM多校训练营(第三场) H - Diff-prime Pairs - [欧拉筛法求素数]

    题目链接:https://www.nowcoder.com/acm/contest/141/H 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524288K ...

  7. 埃氏筛法求素数&构造素数表求素数

    埃氏筛法求素数和构造素数表求素数是一个道理. 首先,列出从2开始的所有自然数,构造一个序列: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1 ...

  8. 【FZYZOJ】数论课堂 题解(约数个数定理)

    前言:想了两个小时orz,最后才想到要用约数个数定理…… ------------- 题目大意: 给定$n,q,A[1],A[2],A[3]$ 现有$A[i]=(A[i-1]+A[i-2]+A[i-3 ...

  9. hdu1492(约数个数定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1492 这里先讲一下约数个数定理: 对于正整数x,将其质因分解为 x = pow(p1, a) * po ...

随机推荐

  1. shell里的getopts

    By francis_hao    Jul 5,2017   getopts是shell的一个内置命令. 概述 getopts optstring name [args]OPTIND,OPTARG,O ...

  2. ionic3自定义图标

    http://blog.csdn.net/qq993284758/article/details/78107412

  3. jquery从零起步学

    html: <HTML> <head> <meta http-equiv="content-type" content="text/html ...

  4. linux认证上网

    公司上网需要认证,linux命令行模式:curl -d "opr=pwdLogin&userName=用户名&pwd=密码&rememberPwd=1" h ...

  5. 【hdu4436/LA6387-str2int】sam处理不同子串

    题意:给出n个数字,数字很长,用字符串读入,长度总和为10^5.求这n个字符串的所有子串(不重复)的和取模2012 . 例如字符串101,和就是1+10+101=112. 题解: 就是求不同的子串连成 ...

  6. bzoj1499: [NOI2005]瑰丽华尔兹&&codevs1748 单调队列优化dp

    这道题 网上题解还是很多很好的 强烈推荐黄学长 码风真的好看 神犇传送门 学习学习 算是道单调队列优化dp的裸题吧 #include<cstdio> #include<cstring ...

  7. 单选按钮 JradioButton 和复选框 JcheckBox 的使用

    package first; import javax.swing.*; import java.awt.*; import java.awt.event.*; class BRTest extend ...

  8. spoj p104 Matrix-Tree定理

    这个问题就是经典的生成树记数问题,题目为spoj p104 highway. 首先我们引入Matrix-Tree定理,由kirchhoff证明,定理的概述为,对于图G,我们定义若干个矩阵, D[G], ...

  9. Django【进阶】缓存

    Django缓存 由于Django是动态网站,所有每次请求均会去数据进行相应的操作,当程序访问量大时,耗时必然会更加明显,最简单解决方式是使用:缓存,缓存将一个某个views的返回值保存至内存或者me ...

  10. PhpExcel一些使用方法

    下面是总结的几个使用方法include 'PHPExcel.php';include 'PHPExcel/Writer/Excel2007.php';//或者include 'PHPExcel/Wri ...