题目链接

bzoj

洛谷

题解

第一问:

假如 \(i < j\)

如果 \(j\)能从\(i\)转移过来

显然中间空隙必须足够

例如:\(50\) \(53\) \(53\) \(52\)

就不能留下\(50\) 和 \(52\)

那么可以得到如果\(j\)能从\(i\)转移过来

满足

\(a[j]-a[i] >= j-i\)

\(=>\) \(a[j]-j >= a[i]-i\)

那么可以对于以上数列跑一边最长不下降子序列

第二问:

将原序列变为上升序列,就等于将新的序列(\(b_i = a_i-i\))变成不下降序列

那么对于最长不下降子序列相邻两点 \(c_{i-1},c_i\)

显然\(b\)序列上, 在这两点之间的点不会存在 \(c_{i-1}<=x<=c_i\)

可以证明,存在一个\(k\)点, 使得 在\(c_{i-1}\)和\(k\)点之间的点变成\(c_{i-1}\),剩下的点变成\(c_i\)时

代价最小

枚举\(k\),算出最小值即可

注意最长不下降子序列不只有一种,需要对于每一种都做一次

Code

#include<bits/stdc++.h>
#define MAX 35010
using namespace std;
inline int read() {
register int x=0,t=1;
register char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-'){t=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
return x*t;
}
struct Line {
int v,next;
}e[MAX<<2];
int h[MAX],cnt=1,n,H[MAX],Q[MAX],len;
inline void Add(int u,int v) {
e[cnt]=(Line){v,h[u]};
h[u]=cnt++;
}
int f[MAX];
long long g[MAX],sum1[MAX],sum2[MAX];
int main()
{
n=read();
for(int i=1;i<=n;++i)H[i]=read()-i;
H[++n]=1<<30;
for(int i=1;i<=n;++i) {
int l=1,r=len,ans=0;
while(l<=r) {
int mid=(l+r)>>1;
if(Q[mid]>H[i])r=mid-1,ans=mid;
else l=mid+1;
}
if(!ans)ans=++len;
Q[f[i]=ans]=H[i];
}
printf("%d\n",n-len);
for(int i=n;i>=0;--i)
g[i]=1e18,Add(f[i],i);
g[0]=0;H[0]=-H[n];
for(int i=1;i<=n;++i) {
for(int E=h[f[i]-1];E;E=e[E].next) {
int v=e[E].v;
if(v>i)break;
if(H[v]>H[i])continue;
for(int j=v;j<=i;++j) {
sum1[j]=sum1[j-1]+abs(H[j]-H[v]);
sum2[j]=sum2[j-1]+abs(H[i]-H[j]);
}
for(int j=v;j<i;++j)
g[i]=min(g[i],g[v]+sum1[j]-sum1[v]+sum2[i]-sum2[j]);
}
}
printf("%lld\n",g[n]);
return 0;
}

洛谷P2501 bzoj1049 [HAOI2006]数字序列的更多相关文章

  1. 洛谷P4331 [BOI2004] Sequence 数字序列 [左偏树]

    题目传送门 数字序列 题目描述 给定一个整数序列 a1​,a2​,⋅⋅⋅,an​ ,求出一个递增序列 b1​<b2​<⋅⋅⋅<bn​ ,使得序列 ai​ 和 bi​ 的各项之差的绝对 ...

  2. 【BZOJ1049】【Luogu P2501】 [HAOI2006]数字序列 DP,结论,LIS

    很有(\(bu\))质(\(hui\))量(\(xie\))的一个题目. 第一问:求最少改变几个数能把一个随机序列变成单调上升序列. \(Solution:\)似乎是一个结论?如果两个数\(A_i\) ...

  3. BZOJ1049 [HAOI2006]数字序列0

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  4. BZOJ1049:[HAOI2006]数字序列(DP)

    Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列. 但是不希望改变过多的数,也不希望改变的幅度太大. Input 第一行包含一个 ...

  5. 洛谷P4331 [BOI2004]Sequence 数字序列(左偏树)

    传送门 感觉……不是很看得懂题解在说什么? 我们先把原数列$a_i-=i$,那么本来要求递增序列,现在只需要求一个非严格递增的就行了(可以看做最后每个$b_i+=i$,那么非严格递增会变为递增) 如果 ...

  6. 洛谷$P4331\ [BOI2004]\ Sequence$ 数字序列 左偏树

    正解:左偏树 解题报告: 传送门$QwQ$ 开始看到的时候$jio$得长得很像之前做的一个$dp$,,, 但是$dp$那题是说不严格这里是严格? 不难想到我们可以让$a_{i},b_{i}$同时减去$ ...

  7. BZOJ1049: [HAOI2006]数字序列

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1049 题解: ydc的题解:http://pan.baidu.com/share/link?u ...

  8. 【BZOJ1049】 [HAOI2006]数字序列

    BZOJ1049 [HAOI2006]数字序列 dp好题? 第一问 第一问我会做!令\(b_i=a_i-i\),求一个最长不下降子序列. \(n-ans\)就是最终的答案. 第二问 好难啊.不会.挖坑 ...

  9. 洛谷 P2501 [HAOI2006]数字序列 解题报告

    P2501 [HAOI2006]数字序列 题目描述 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变的幅度太大. ...

随机推荐

  1. 在英文Win7操作系统上部署C#开发的Web系统出现乱码的解决方法

    今天,迁移机器,把一个使用C#开发的Web系统部署到一台英文版Win7操作系统上,部署好以后,系统可以登录,只是网页上出现汉字乱码. 在这台电脑上,打开Word等文本编辑器,是可以正常输入.显示中文的 ...

  2. suse10配置SSH无密码登录的方法

    RSH配置(集群中的每台机器执行以下操作) 1.因SUSE LINUX不自带RSH-SERVER服务,所以首先要去从www.rpmfind.net 下载rsh-server服务的RPM包. 然后切换到 ...

  3. ShopNc登录

  4. 第一章Python简介

    1.Python shell(Python命令解释器) 如下所示 2.Python的交互模式 如下 3.代码编辑器窗口 在上面的那些指令称为源代码. 4.在python中,缩进是有语法意义的. 在某行 ...

  5. POJ - 2586 Y2K Accounting Bug (找规律)

    Accounting for Computer Machinists (ACM) has sufferred from the Y2K bug and lost some vital data for ...

  6. EBS登陆界面个性化

    把完整资料贴出来 Set the profile option Local Login Mask (FND_SSO_LOCAL_LOGIN_MASK). (This profile option is ...

  7. [raspberry p3] suse wifi驱动加载

    问题 raspberry pi3安装后发现wifi 启动不了, brcmf_sdio加载失败了,return error code为-110 处理方法 打开 /etc/dracut.conf.d/ra ...

  8. wp 取消button按下效果

    <Style x:Key="ButtonStyle2" TargetType="Button">            <Setter Pro ...

  9. 表单使用clone方法后, 原有select无法生效

    textarea和select的值clone的时候会丢掉,在clone的时候将val再重新赋值一下,如果知道这个了就加单了   测试发现,textarea和select的jquery的clone方法有 ...

  10. C# System.Threading.Timer 定时器

    前提: 需要引入  System.Threading: 描述: 在很多时间我们都需要进行延迟执行,或是定时执行一些指定业务,这个时候使用 Timer 是最合适的,而且 Timer 是Cpu 级别处理对 ...