Adjacent Bit Counts

Time Limit: 1000ms
Memory Limit: 65536KB

64-bit integer IO format: %lld      Java class name: Main

Type:

None

 

None
 
Graph Theory
 
    2-SAT
 
    Articulation/Bridge/Biconnected Component
 
    Cycles/Topological Sorting/Strongly Connected Component
 
    Shortest Path
 
        Bellman Ford
 
        Dijkstra/Floyd Warshall
 
    Euler Trail/Circuit
 
    Heavy-Light Decomposition
 
    Minimum Spanning Tree
 
    Stable Marriage Problem
 
    Trees
 
    Directed Minimum Spanning Tree
 
    Flow/Matching
 
        Graph Matching
 
            Bipartite Matching
 
            Hopcroft–Karp Bipartite Matching
 
            Weighted Bipartite Matching/Hungarian Algorithm
 
        Flow
 
            Max Flow/Min Cut
 
            Min Cost Max Flow
 
DFS-like
 
    Backtracking with Pruning/Branch and Bound
 
    Basic Recursion
 
    IDA* Search
 
    Parsing/Grammar
 
    Breadth First Search/Depth First Search
 
    Advanced Search Techniques
 
        Binary Search/Bisection
 
        Ternary Search
 
Geometry
 
    Basic Geometry
 
    Computational Geometry
 
    Convex Hull
 
    Pick's Theorem
 
Game Theory
 
    Green Hackenbush/Colon Principle/Fusion Principle
 
    Nim
 
    Sprague-Grundy Number
 
Matrix
 
    Gaussian Elimination
 
    Matrix Exponentiation
 
Data Structures
 
    Basic Data Structures
 
    Binary Indexed Tree
 
    Binary Search Tree
 
    Hashing
 
    Orthogonal Range Search
 
    Range Minimum Query/Lowest Common Ancestor
 
    Segment Tree/Interval Tree
 
    Trie Tree
 
    Sorting
 
    Disjoint Set
 
String
 
    Aho Corasick
 
    Knuth-Morris-Pratt
 
    Suffix Array/Suffix Tree
 
Math
 
    Basic Math
 
    Big Integer Arithmetic
 
    Number Theory
 
        Chinese Remainder Theorem
 
        Extended Euclid
 
        Inclusion/Exclusion
 
        Modular Arithmetic
 
    Combinatorics
 
        Group Theory/Burnside's lemma
 
        Counting
 
    Probability/Expected Value
 
Others
 
    Tricky
 
    Hardest
 
    Unusual
 
    Brute Force
 
    Implementation
 
    Constructive Algorithms
 
    Two Pointer
 
    Bitmask
 
    Beginner
 
    Discrete Logarithm/Shank's Baby-step Giant-step Algorithm
 
    Greedy
 
    Divide and Conquer
 
Dynamic Programming
                  Tag it!

For a string of bits x1x2, x3, …, xn,B the adjacent bit count of the string (AdjBC(x)) is given by
x1*x2 + x2*x3 + x3*x4 + … + xn-1*xn
which counts the number of times a 1 bit is adjacent to another 1 bit. For example:
AdjBC(011101101) = 3
AdjBC(111101101) = 4
AdjBC(010101010) = 0
Write a program which takes as input integers and and returns the number of bit strings of bits (out of 2) that satisfy AdjBC(x) = k. For example, for 5 bit strings, there are 6 ways of getting AdjBC(x) = 2:

11100, 01110, 00111, 10111, 11101, 11011

 

Input

The first line of input contains a single integer P, (1 ≤ ≤ 1000), which is the number of data sets that follow. Each data set is a single line that contains the data set number, followed by a space, followed by a decimal integer giving the number (n) of bits in the bit strings, followed by a single space, followed by a decimal integer (k) giving the desired adjacent bit count. The number of bits (n) will not be greater than 100 and the parameters and will be chosen so that the result will fit in a signed 32-bit integer.

 

Output

For each data set there is one line of output. It contains the data set number followed by a single space, followed by the number of n-bit strings with adjacent bit count equal to k.

 

Sample Input

10
1 5 2
2 20 8
3 30 17
4 40 24
5 50 37
6 60 52
7 70 59
8 80 73
9 90 84
10 100 90

Sample Output

1 6
2 63426
3 1861225
4 168212501
5 44874764
6 160916
7 22937308
8 99167
9 15476
10 23076518 解题思路:用dp[i][j][k]来定义状态。i表示当前数字是第i位,j表示达到j值,k代表末尾是0还是1.由于当末尾为0对新加的一位没有要求,即j值不会变动,所以当dp[i][j][0]时转移方程为dp[i][j][0]=dp[i-1][j][0]+dp[i-1][j][1]。而当末尾为1时如果新加一位的值为1,会影响j的值。所以当dp[i][j][1]时dp[i][j][1]=dp[i-1][j-1][1]+dp[i-1][j][0]。
#include<bits/stdc++.h>
using namespace std;
int dp[500][500][2];
void DP(int n){
memset(dp,0,sizeof(dp));
dp[1][0][0]=1;
dp[1][0][1]=1;
for(int i=2;i<n;i++){
for(int j=0;j<i;j++){
dp[i][j][0]=dp[i-1][j][0]+dp[i-1][j][1];
if(j){
dp[i][j][1]=dp[i-1][j][0]+dp[i-1][j-1][1];
}else{
dp[i][j][1]=dp[i-1][j][0];
} }
}
}
int main(){
int n;
scanf("%d",&n);
DP(110);
while(n--){
int t,ta,tb;
scanf("%d%d%d",&t,&ta,&tb);
cout<<t<<" "<<dp[ta][tb][0]+dp[ta][tb][1]<<endl; }
return 0;
}

  

BNU4286——Adjacent Bit Counts——————【dp】的更多相关文章

  1. Kattis - honey【DP】

    Kattis - honey[DP] 题意 有一只蜜蜂,在它的蜂房当中,蜂房是正六边形的,然后它要出去,但是它只能走N步,第N步的时候要回到起点,给出N, 求方案总数 思路 用DP 因为N == 14 ...

  2. HDOJ 1423 Greatest Common Increasing Subsequence 【DP】【最长公共上升子序列】

    HDOJ 1423 Greatest Common Increasing Subsequence [DP][最长公共上升子序列] Time Limit: 2000/1000 MS (Java/Othe ...

  3. HDOJ 1501 Zipper 【DP】【DFS+剪枝】

    HDOJ 1501 Zipper [DP][DFS+剪枝] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Ja ...

  4. HDOJ 1257 最少拦截系统 【DP】

    HDOJ 1257 最少拦截系统 [DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...

  5. HDOJ 1159 Common Subsequence【DP】

    HDOJ 1159 Common Subsequence[DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...

  6. HDOJ_1087_Super Jumping! Jumping! Jumping! 【DP】

    HDOJ_1087_Super Jumping! Jumping! Jumping! [DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...

  7. POJ_2533 Longest Ordered Subsequence【DP】【最长上升子序列】

    POJ_2533 Longest Ordered Subsequence[DP][最长递增子序列] Longest Ordered Subsequence Time Limit: 2000MS Mem ...

  8. HackerRank - common-child【DP】

    HackerRank - common-child[DP] 题意 给出两串长度相等的字符串,找出他们的最长公共子序列e 思路 字符串版的LCS AC代码 #include <iostream&g ...

  9. LeetCode:零钱兑换【322】【DP】

    LeetCode:零钱兑换[322][DP] 题目描述 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成 ...

随机推荐

  1. (转)深入研究MiniMVC之后续篇

    今天在园子看到<深入研究 蒋金楠(Artech)老师的 MiniMvc(迷你 MVC),看看 MVC 内部到底是如何运行的>之后,本来是不打算开博来续这个后传,不过,在那边回了个评论之后, ...

  2. Socket 简易静态服务器 WPF MVVM模式(四)

    最重要的一个类Socket类 using System; using System.Collections.Generic; using System.IO; using System.Linq; u ...

  3. 《C#多线程编程实战》2.10 SpinWait

    emmm 这个SpinWait 中文是自旋等待的意思. 所谓自旋,就是自己追自己影子,周伯通的左右手互博,不好听就是放屁自己追着玩,小狗转圈咬自己的尾巴 SpinWait是一个结构体,并不是一个类. ...

  4. CH收藏的书

    论语 道德经 墨子

  5. 前端中onload与ready的区别

    Jquery的ready()与Javascrpit的load() 1 window.onload() $(document).ready() 加载时机 必须等待网页全部加载完毕(包括图片等),然后再执 ...

  6. scrapy 爬取天猫商品信息

    spider # -*- coding: utf-8 -*- from urllib.parse import urlencode import requests import scrapy impo ...

  7. php tp5常用小知识

    1. tp5 获取当前访问的模块名,控制器名,方法名 $request= \think\Request::instance(); $module = $request->module(); // ...

  8. 了解一个名词——GTD

    概念:就是Getting Things Done的缩写,翻译过来就是“把事情做完”,是一个管理时间的方法. 核心理念概括:就是必须记录下来要做的事,然后整理安排并使自己一一去执行. 五个核心原则是:收 ...

  9. PAT天梯赛L3-015 球队食物链

    读题可以知道是DFS,注意一点,题目说的是赢过,所以str[i][j]=‘W',那么g[i][j]=1,str[i][j]='L',g[j][i]=1 然后就常规搜索即可,还有一点就是剪枝,如果没有可 ...

  10. Ubuntu Server 中实际内存与物理内存不相等的问题

    记录 来源 v2ex,提到了一个平时不是很起眼的问题,Ubuntu Server 中系统默认会占用 128M 内存,用于 CVM 内部的 kdump 服务. 科普 查看 CVM 所拥有的物理内存 通过 ...