Adjacent Bit Counts

Time Limit: 1000ms
Memory Limit: 65536KB

64-bit integer IO format: %lld      Java class name: Main

Type:

None

 

None
 
Graph Theory
 
    2-SAT
 
    Articulation/Bridge/Biconnected Component
 
    Cycles/Topological Sorting/Strongly Connected Component
 
    Shortest Path
 
        Bellman Ford
 
        Dijkstra/Floyd Warshall
 
    Euler Trail/Circuit
 
    Heavy-Light Decomposition
 
    Minimum Spanning Tree
 
    Stable Marriage Problem
 
    Trees
 
    Directed Minimum Spanning Tree
 
    Flow/Matching
 
        Graph Matching
 
            Bipartite Matching
 
            Hopcroft–Karp Bipartite Matching
 
            Weighted Bipartite Matching/Hungarian Algorithm
 
        Flow
 
            Max Flow/Min Cut
 
            Min Cost Max Flow
 
DFS-like
 
    Backtracking with Pruning/Branch and Bound
 
    Basic Recursion
 
    IDA* Search
 
    Parsing/Grammar
 
    Breadth First Search/Depth First Search
 
    Advanced Search Techniques
 
        Binary Search/Bisection
 
        Ternary Search
 
Geometry
 
    Basic Geometry
 
    Computational Geometry
 
    Convex Hull
 
    Pick's Theorem
 
Game Theory
 
    Green Hackenbush/Colon Principle/Fusion Principle
 
    Nim
 
    Sprague-Grundy Number
 
Matrix
 
    Gaussian Elimination
 
    Matrix Exponentiation
 
Data Structures
 
    Basic Data Structures
 
    Binary Indexed Tree
 
    Binary Search Tree
 
    Hashing
 
    Orthogonal Range Search
 
    Range Minimum Query/Lowest Common Ancestor
 
    Segment Tree/Interval Tree
 
    Trie Tree
 
    Sorting
 
    Disjoint Set
 
String
 
    Aho Corasick
 
    Knuth-Morris-Pratt
 
    Suffix Array/Suffix Tree
 
Math
 
    Basic Math
 
    Big Integer Arithmetic
 
    Number Theory
 
        Chinese Remainder Theorem
 
        Extended Euclid
 
        Inclusion/Exclusion
 
        Modular Arithmetic
 
    Combinatorics
 
        Group Theory/Burnside's lemma
 
        Counting
 
    Probability/Expected Value
 
Others
 
    Tricky
 
    Hardest
 
    Unusual
 
    Brute Force
 
    Implementation
 
    Constructive Algorithms
 
    Two Pointer
 
    Bitmask
 
    Beginner
 
    Discrete Logarithm/Shank's Baby-step Giant-step Algorithm
 
    Greedy
 
    Divide and Conquer
 
Dynamic Programming
                  Tag it!

For a string of bits x1x2, x3, …, xn,B the adjacent bit count of the string (AdjBC(x)) is given by
x1*x2 + x2*x3 + x3*x4 + … + xn-1*xn
which counts the number of times a 1 bit is adjacent to another 1 bit. For example:
AdjBC(011101101) = 3
AdjBC(111101101) = 4
AdjBC(010101010) = 0
Write a program which takes as input integers and and returns the number of bit strings of bits (out of 2) that satisfy AdjBC(x) = k. For example, for 5 bit strings, there are 6 ways of getting AdjBC(x) = 2:

11100, 01110, 00111, 10111, 11101, 11011

 

Input

The first line of input contains a single integer P, (1 ≤ ≤ 1000), which is the number of data sets that follow. Each data set is a single line that contains the data set number, followed by a space, followed by a decimal integer giving the number (n) of bits in the bit strings, followed by a single space, followed by a decimal integer (k) giving the desired adjacent bit count. The number of bits (n) will not be greater than 100 and the parameters and will be chosen so that the result will fit in a signed 32-bit integer.

 

Output

For each data set there is one line of output. It contains the data set number followed by a single space, followed by the number of n-bit strings with adjacent bit count equal to k.

 

Sample Input

10
1 5 2
2 20 8
3 30 17
4 40 24
5 50 37
6 60 52
7 70 59
8 80 73
9 90 84
10 100 90

Sample Output

1 6
2 63426
3 1861225
4 168212501
5 44874764
6 160916
7 22937308
8 99167
9 15476
10 23076518 解题思路:用dp[i][j][k]来定义状态。i表示当前数字是第i位,j表示达到j值,k代表末尾是0还是1.由于当末尾为0对新加的一位没有要求,即j值不会变动,所以当dp[i][j][0]时转移方程为dp[i][j][0]=dp[i-1][j][0]+dp[i-1][j][1]。而当末尾为1时如果新加一位的值为1,会影响j的值。所以当dp[i][j][1]时dp[i][j][1]=dp[i-1][j-1][1]+dp[i-1][j][0]。
#include<bits/stdc++.h>
using namespace std;
int dp[500][500][2];
void DP(int n){
memset(dp,0,sizeof(dp));
dp[1][0][0]=1;
dp[1][0][1]=1;
for(int i=2;i<n;i++){
for(int j=0;j<i;j++){
dp[i][j][0]=dp[i-1][j][0]+dp[i-1][j][1];
if(j){
dp[i][j][1]=dp[i-1][j][0]+dp[i-1][j-1][1];
}else{
dp[i][j][1]=dp[i-1][j][0];
} }
}
}
int main(){
int n;
scanf("%d",&n);
DP(110);
while(n--){
int t,ta,tb;
scanf("%d%d%d",&t,&ta,&tb);
cout<<t<<" "<<dp[ta][tb][0]+dp[ta][tb][1]<<endl; }
return 0;
}

  

BNU4286——Adjacent Bit Counts——————【dp】的更多相关文章

  1. Kattis - honey【DP】

    Kattis - honey[DP] 题意 有一只蜜蜂,在它的蜂房当中,蜂房是正六边形的,然后它要出去,但是它只能走N步,第N步的时候要回到起点,给出N, 求方案总数 思路 用DP 因为N == 14 ...

  2. HDOJ 1423 Greatest Common Increasing Subsequence 【DP】【最长公共上升子序列】

    HDOJ 1423 Greatest Common Increasing Subsequence [DP][最长公共上升子序列] Time Limit: 2000/1000 MS (Java/Othe ...

  3. HDOJ 1501 Zipper 【DP】【DFS+剪枝】

    HDOJ 1501 Zipper [DP][DFS+剪枝] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Ja ...

  4. HDOJ 1257 最少拦截系统 【DP】

    HDOJ 1257 最少拦截系统 [DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...

  5. HDOJ 1159 Common Subsequence【DP】

    HDOJ 1159 Common Subsequence[DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...

  6. HDOJ_1087_Super Jumping! Jumping! Jumping! 【DP】

    HDOJ_1087_Super Jumping! Jumping! Jumping! [DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...

  7. POJ_2533 Longest Ordered Subsequence【DP】【最长上升子序列】

    POJ_2533 Longest Ordered Subsequence[DP][最长递增子序列] Longest Ordered Subsequence Time Limit: 2000MS Mem ...

  8. HackerRank - common-child【DP】

    HackerRank - common-child[DP] 题意 给出两串长度相等的字符串,找出他们的最长公共子序列e 思路 字符串版的LCS AC代码 #include <iostream&g ...

  9. LeetCode:零钱兑换【322】【DP】

    LeetCode:零钱兑换[322][DP] 题目描述 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成 ...

随机推荐

  1. linux 建议锁和强制锁

    作为APUE 14.3节的参考 linux是有强制锁的,但是默认不开启.想让linux支持强制性锁,不但在mount的时候需要加上-o mand,而且对要加锁的文件也需要设置相关权限. .       ...

  2. MooseFS分布式文件系统介绍

    一.简介 MooseFS是一个具备冗余容错功能的分布式网络文件系统,它将数据分别存放在多个物理服务器或单独磁盘或分区上,确保一份数据有多个备份副本.对于访问的客户端或者用户来说,整个分布式网络文件系统 ...

  3. 获取oracle 库所有表名

    (mybatis多参)

  4. Spring AOP的实现机制

    AOP(Aspect Orient Programming),一般称为面向切面编程,作为面向对象的一种补充,用于处理系统中分布于各个模块的横切关注点,比如事务管理,日志,缓存等等.AOP 实现的关键在 ...

  5. Django之跨域请求同源策略

    同源策略: 首先基于安全的原因,浏览器是存在同源策略这个机制的,同源策略阻止从一个源加载的文档或脚本获取或设置另一个源加载的文档的属性. 而如果我们要跳过这个策略,也就是说非要跨域请求,那么就需要通过 ...

  6. 有关unixODBC:Data source name not found, and no default driver specified的问题

    还是昨天测试postgresql的有关Mirroring Controller的功能时出的问题(真TM是个坑). 首先说下环境: 操作系统平台:RHEL6 x86_64 unixODBC版本:2.3. ...

  7. python学习,day2:python字符串和二进制之间的互换

    在python3中,byte二进制和striing字符串之间不能直接操作,需要进行编码和解码才行.下面是个例子 msg = '我爱北京天安门' print(msg) print(msg.encode( ...

  8. HDU 6189 Law of Commutation(规律)

    题意: 给定n,a,求区间 [ 1 , 1<<n ] 的数b 满足 的个数 分析:打出暴力程序可以发现当a为奇数的时候结果为一: 当a为偶时 , a^b=2^(k+b)mod 2^n ; ...

  9. UVA - 11552 DP 划分

    每k个字符划分一个组,该组内字符顺序可以任意重排,定义块为最长的连续的字符子串,求长度为m*k的字符串中最少的块的数目 设\(dp[i][j]\):前\(i\)组中第\(i\)组结尾为\(j\)的最优 ...

  10. springboot(五)-使用Redis

    Redis服务器 springboot要使用redis,首先当然要确保redis服务器能够正常跑起来. pom.xml 这里添加redis的依赖,当然也是springboot集成好的. <!-- ...