[国家集训队]Crash的数字表格 / JZPTAB

题意

求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\)


鉴于我式子没推出来,所以再推一遍。

\[\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)
\]

\[=\sum\limits_{i=1}^n\sum\limits_{j=1}^m\frac{ij}{gcd(i,j)}
\]

\[=\sum\limits_{i=1}^n\sum\limits_{j=1}^m ij\sum_{k=1}^{min(i,j)}\frac{1}{k}[gcd(i,j)=k]
\]

\[=\sum_{k=1}^{min(n,m)}\frac{1}{k}\sum_{i=1}^n\sum_{j=1}^mij[gcd(i,j)=k]
\]

\[=\sum_{k=1}^{min(n,m)}k\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}ij[gcd(i,j)=1]
\]

\[=\sum_{k=1}^{min(n,m)}k\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}ij\sum_{d=1}^{min(i,j)}\mu(d)[gcd(i,j)=d]
\]

\[=\sum_{k=1}^{min(n,m)}k\sum_{d=1}^{min(\lfloor\frac{n}{k}\rfloor,\lfloor\frac{m}{k}\rfloor)}\mu(d)d^2\sum_{i=1}^{\lfloor\frac{n}{kd}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{kd}\rfloor}ij
\]

令$g(x)=\frac{(x+1)x}{2}$

\[=\sum_{k=1}^{min(n,m)}k\sum_{d=1}^{min(\lfloor\frac{n}{k}\rfloor,\lfloor\frac{m}{k}\rfloor)}\mu(d)d^2g(\lfloor\frac{n}{kd}\rfloor)g(\lfloor\frac{m}{kd}\rfloor)
\]

令$T=kd$

\[=\sum_{T=1}^{min(n,m)}g(\lfloor\frac{n}{T}\rfloor)g(\lfloor\frac{m}{T}\rfloor)\sum_{kd=T}kd^2\mu(d)
\]

\[=\sum_{T=1}^{min(n,m)}g(\lfloor\frac{n}{T}\rfloor)g(\lfloor\frac{m}{T}\rfloor)T\sum_{d|T}d\mu(d)
\]

设\(f(n)=\sum_{d|n}d\mu(d)\)

研究一下\(\tt{Ta}\)的性质,设\(p\)代表一个质数。

有\(f(p)=1-p,f(p^n)=f(p)\),\(f(n)\)是一个积性函数。

所以我们可以在线筛的时候把这个函数\(O(n)\)筛出来。

前面整除分块一下就可以了。

总复杂度\(O(\sqrt n+n)\)


Code:

#include <cstdio>
#define ll long long
const ll mod=20101009;
const int N=1e7;
int pri[N+10],ispri[N+10],cnt;
ll g[N+10];
#define f(x) (((x)+1)*(x)/2%mod)
void init()
{
g[1]=1;
for(int i=2;i<=N;i++)
{
if(!ispri[i])
{
g[i]=1-i;
pri[++cnt]=i;
}
for(int j=1;j<=cnt&&pri[j]*i<=N;j++)
{
ispri[pri[j]*i]=1;
if(i%pri[j]==0){g[pri[j]*i]=g[i];break;}
else g[pri[j]*i]=g[i]*g[pri[j]]%mod;
}
}
for(int i=1;i<=N;i++) g[i]*=i%=mod,(g[i]+=g[i-1])%mod;
}
ll min(ll a,ll b){return a<b?a:b;}
int main()
{
init();
ll ans=0,n,m;
scanf("%lld%lld",&n,&m);
for(ll l=1,r;l<=min(n,m);l=r+1)
{
r=min(n/(n/l),m/(m/l));
(ans+=f(n/l)*f(m/l)%mod*(g[r]-g[l-1]))%=mod;
}
printf("%lld\n",(ans+mod)%mod);
return 0;
}

2018.10.26

洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告的更多相关文章

  1. 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...

  2. 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    传送门 式子好麻烦orz……大佬好腻害orz->这里 //minamoto #include<iostream> #include<cstdio> #define ll ...

  3. 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    题意:求$\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$. 开始开心(自闭)化简: $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$ =$\su ...

  4. 洛谷P1829 [国家集训队]Crash的数字表格

    题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整数.例如,LCM(6, ...

  5. [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)

    题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...

  6. P1829 [国家集训队]Crash的数字表格 / JZPTAB

    推式子太快乐啦!虽然我好蠢而且dummy和maomao好巨(划掉) 思路 莫比乌斯反演的题目 首先这题有\(O(\sqrt n)\)的做法但是我没写咕咕咕 然后就是爆推一波式子 \[ \sum_{i= ...

  7. P1829 [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演

    又一道...分数和取模次数成正比$qwq$ 求:$\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j)$ 原式 $=\sum_{i=1}^N\sum_{j=1}^M\frac{i*j}{g ...

  8. P1829 [国家集训队]Crash的数字表格

    P1829 [国家集训队]Crash的数字表格 原题传送门 前置芝士 莫比乌斯反演 乘法逆元 数论分块 正文 //补充:以下式子中的除法均为整除 由题目可以得知,这道题让我们所求的数,用一个式子来表达 ...

  9. 题解-[国家集训队]Crash的数字表格 / JZPTAB

    题解-[国家集训队]Crash的数字表格 / JZPTAB 前置知识: 莫比乌斯反演 </> [国家集训队]Crash的数字表格 / JZPTAB 单组测试数据,给定 \(n,m\) ,求 ...

随机推荐

  1. JDK7 新特性

    JDK7新特性的目录导航: 二进制字面值 switch 语句支持 String try-with-resources catch 多个类型异常 字面值中使用下划线 类型推断 改进泛型类型可变参数 其它 ...

  2. Hadoop(23)-Yarn资源调度器

    Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而MapReduce等运算程序则相当于运行于操作系统之上的应用程序 1. Yarn工作机制 机制详解 第1 ...

  3. Python变量和循环

    1.Python变量 比C语言,Java语言更加简洁,不需要加int等等类型定义,直接变量名 = 值,Python里甚至不需要分号.有些特定的不能当做变量名,变量只能由字母.数字和下划线组成,下划线可 ...

  4. 前端学习之HTML基础

    要点: 理解HTTP请求响应模式及通信规范 HTML的各种标签和常用标签 CSS是用于样式渲染和定位布局 JS将HTML动态化 jquery是JS的高级封装 理解HTTP请求响应模式及通信规范 HTT ...

  5. 汇编实验15:安装新的int 9中断例程

    汇编实验15:安装新的int 9中断例程 任务 安装一个新的int 9中断例程,功能:在DOS下,按下“A”键后,除非不在松开,一旦松开后,就显示满屏幕的“A”,其他键照常处理. 预备知识概要 这次实 ...

  6. 隐藏WPF ToolBar 左侧的移动虚线和右侧的小箭头

    原文:隐藏WPF ToolBar 左侧的移动虚线和右侧的小箭头   上面的图是两个工具栏的链接处.   去除蓝色部分的方法是 设置工具栏的ToolBarTray.IsLocked附加选项为True   ...

  7. C++11中initializer lists的使用

    Before C++11,there was no easy way to do things like initialize a std::vector or std::map(or a custo ...

  8. 【jQuery】 js 对象

    [jQuery] js 对象 一.  创建对象的三种方式 <script> var v1 = new Object(); v1.name = "name1"; v1.a ...

  9. log报错: Caused by: java.sql.SQLException: An attempt by a client to checkout a Connection has timed out.

    报错: 解决方式: 1.登录数据库查看错误原因 结果发现账号无法正常登录出现账号被锁定的错误. 2.如何账号解锁? 用sys系统管理员账号登录数据库 SQL> alter user 用户名 ac ...

  10. tp5 常见问题 模板文件 路由

    W:视图 Q:是MVC中的V,也就是在模块下面的view目录下的html文件,就是写的页面. W:模板 Q:视图在控制器的叫法,在fetch,display等方法中传入的模板参数   最后传到视图. ...