P2387 [NOI2014]魔法森林

题目描述

为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士。魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…,m。初始时小 E 同学在 1 号节点,隐士则住在 n 号节点。小 E 需要通过这一片魔法森林,才能够拜访到隐士。

魔法森林中居住了一些妖怪。每当有人经过一条边的时候,这条边上的妖怪 就会对其发起攻击。幸运的是,在 1 号节点住着两种守护精灵:A 型守护精灵与 B 型守护精灵。小 E 可以借助它们的力量,达到自己的目的。

只要小 E 带上足够多的守护精灵,妖怪们就不会发起攻击了。具体来说,无 向图中的每一条边 ei 包含两个权值 ai 与 bi 。若身上携带的 A 型守护精灵个数不 少于 ai ,且 B 型守护精灵个数不少于 bi ,这条边上的妖怪就不会对通过这条边 的人发起攻击。当且仅当通过这片魔法森林的过程中没有任意一条边的妖怪向 小 E 发起攻击,他才能成功找到隐士。

由于携带守护精灵是一件非常麻烦的事,小 E 想要知道,要能够成功拜访到 隐士,最少需要携带守护精灵的总个数。守护精灵的总个数为 A 型守护精灵的 个数与 B 型守护精灵的个数之和。

输入输出格式

输入格式:

输入文件的第 1 行包含两个整数 n,m,表示无向图共有 n 个节点,m 条边。 接下来 m 行,第i+ 1 行包含 4 个正整数 Xi,Yi,ai,bi,描述第i条无向边。 其中Xi与 Yi为该边两个端点的标号,ai 与 bi 的含义如题所述。 注意数据中可能包含重边与自环。

输出格式:

输出一行一个整数:如果小 E 可以成功拜访到隐士,输出小 E 最少需要携 带的守护精灵的总个数;如果无论如何小 E 都无法拜访到隐士,输出“-1”(不 含引号)。

说明


各种奇奇怪怪的二分确定是错误的

我用神奇的二分+spfa错解混了50分

LCT 正解思路:

排序一维,按顺序加边,当加出环的时候,去掉最大的一条边。

若1与n联通,则更新答案

因为lct处理的是点权,所以我们队每条边都建一个点


Code:

#include <cstdio>
#include <algorithm>
#define ls ch[now][0]
#define rs ch[now][1]
#define fa par[now]
const int N=150010;
const int inf=0x7fffffff;
int min(int x,int y){return x<y?x:y;}
int ch[N][2],par[N],dat[N],ms[N],tag[N],loc[N],s[N],tot;
int ans=inf,n,m;
bool isroot(int now){return ch[fa][0]==now||ch[fa][1]==now;}
int identity(int now){return ch[fa][1]==now;}
void connect(int f,int now,int typ){fa=f;ch[f][typ]=now;}
void Reverse(int now){int tmp=ls;ls=rs,rs=tmp;tag[now]^=1;}
void updata(int now)
{
if(ms[ls]>ms[rs]) ms[now]=ms[ls],loc[now]=loc[ls];
else ms[now]=ms[rs],loc[now]=loc[rs];
if(dat[now]>ms[now]) ms[now]=dat[now],loc[now]=now;
}
void Rotate(int now)
{
int p=fa,typ=identity(now);
connect(p,ch[now][typ^1],typ);
if(isroot(p)) connect(par[p],now,identity(p));
else fa=par[p];
connect(now,p,typ^1);
updata(p),updata(now);
}
void push_down(int now)
{
if(tag[now])
{
if(ls) Reverse(ls);
if(rs) Reverse(rs);
tag[now]^=1;
}
}
void splay(int now)
{
while(isroot(now)) s[++tot]=now,now=fa;
s[++tot]=now;
while(tot) push_down(s[tot--]);
now=s[1];
for(;isroot(now);Rotate(now))
if(isroot(fa))
Rotate(identity(now)^identity(fa)?now:fa);
}
void access(int now)
{
for(int las=0;now;las=now,now=fa)
splay(now),rs=las,updata(now);
}
void evert(int now)
{
access(now);
splay(now);
Reverse(now);
}
void link(int u,int v)
{
evert(u);
par[u]=v;
}
void cat(int u,int v)
{
evert(u);
access(v);
splay(v);
ch[v][0]=par[u]=0;
updata(v);
}
int findroot(int now)
{
access(now);
splay(now);
while(ls) now=ls;
return now;
}
void query(int u,int v,int &mx,int &pos)
{
evert(u);
access(v);
splay(v);
pos=loc[v],mx=ms[v];
}
struct node
{
int u,v,a,b;
friend bool operator <(node n1,node n2)
{
return n1.a<n2.a;
}
}e[N];
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
scanf("%d%d%d%d",&e[i].u,&e[i].v,&e[i].a,&e[i].b);
std::sort(e+1,e+1+m);
for(int i=1;i<=m;i++)
dat[i+n]=ms[i+n]=e[i].b,loc[i+n]=i+n;
for(int i=1;i<=m;i++)
{
int u=e[i].u,v=e[i].v,mx,pos;
if(u==v) continue;
if(findroot(u)==findroot(v))
{
query(u,v,mx,pos);
if(mx>e[i].b)
{
cat(pos,e[pos-n].u),cat(pos,e[pos-n].v);
link(n+i,u),link(n+i,v);
}
}
else
link(n+i,u),link(n+i,v);
if(findroot(1)==findroot(n))
{
query(1,n,mx,pos);
ans=min(ans,mx+e[i].a);
}
}
if(ans==inf) printf("-1\n");
else printf("%d\n",ans);
return 0;
}

2018.8.22

洛谷 P2387 [NOI2014]魔法森林 解题报告的更多相关文章

  1. 洛谷P2387 [NOI2014]魔法森林(LCT)

    魔法森林 题目传送门 解题思路 把每条路按照\(a\)的值从小到大排序.然后用LCT按照b的值维护最小生成树,将边按照顺序放入.如果\(1\)到\(n\)有了一条路径,就更新最小答案.这个过程就相当于 ...

  2. 洛谷P2387 [NOI2014]魔法森林(lct维护最小生成树)

    题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…, ...

  3. 洛谷P2387 [NOI2014]魔法森林(LCT,Splay)

    在XZY&XZZ巨佬的引领下,一枚蒟蒻终于啃动了这道题...... 这次还是第一次写LCT维护边权,还要化边为点,思路乱七八糟的,写起来也不顺手,还好调了许久终于AC啦. 贪心排序按一个关键字 ...

  4. 洛谷P2387 [NOI2014]魔法森林(LCT)

    在XZY&XZZ巨佬的引领下,一枚蒟蒻终于啃动了这道题...... 这次还是第一次写LCT维护边权,还要化边为点,思路乱七八糟的,写起来也不顺手,还好调了许久终于AC啦. 贪心排序按一个关键字 ...

  5. 洛谷 2387 NOI2014魔法森林 LCT

    [题解] 我们先把边按照$a$值从小到大排序,并按照这个顺序加边. 如果当前要加入的边连接的两点$u$与$v$已经是连通的,那么直接加入这条边就会出现环.这时我们需要删除这个环中$b$值最大的边.因此 ...

  6. 【洛谷P2387】魔法森林

    题目大意:给定一个 N 个点,M 条边的无向图,边有两个边权 a, b,求从 1 号节点到 N 号节点路径的两个权值和的最大值最小是多少. 题解: 对于有两个属性的结构的最优化问题,可以考虑先按照其中 ...

  7. 洛谷2387 NOI2014魔法森林(LCT维护最小生成树)

    本题是运用LCT来维护一个最小生成树. 是一个经典的套路 题目中求的是一个\(max(a_i)+max(b_i)\)尽可能小的路径. 那么这种的一个套路就是,先按照一维来排序,然后用LCT维护另一维 ...

  8. P2387 [NOI2014]魔法森林(LCT)

    P2387 [NOI2014]魔法森林 LCT边权维护经典题 咋维护呢?边化为点,边权变点权. 本题中我们把边对关键字A进行排序,动态维护关键字B的最小生成树 加边后出现环咋办? splay维护最大边 ...

  9. 洛谷_Cx的故事_解题报告_第四题70

    1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h>   struct node {     long x,y,c; ...

随机推荐

  1. php常见面试(Smarty及相关知识)

    1.Smarty简介: 是一种php模板引擎,它分开了后台程序和前台页面内容,使程序员和美工分工合作.还有其它模版引擎实现同样的目的. 2.Smarty使用: 建立php文件: 包含smarty类文件 ...

  2. python-三级菜单的优化实现

    三级菜单需求: 1.可依次选择进入各子菜单 2.可从任意一层往回退到上一层 3.可从任意一层退出程序 所需新知识点:列表.字典 先通过字典建立数据结构 #创建字典 city_dic = { " ...

  3. ctf题目writeup(2)

    2019.1.29 题目地址: https://www.ichunqiu.com/battalion 1. 点开链接: include "flag.php";$a = @$_REQ ...

  4. ESP32 学习笔记 - 环境搭建

    打开终端 输入命令 sudo apt-get install gcc git wget make libncurses-dev flex bison gperf python python-seria ...

  5. ffplay使用笔记

    ffplay播放yuv文件命令: ffplay -f rawvideo -video_size 1920x1080 a.yuv   ffplay播放mp4.h.264.hevc文件命令: ffplay ...

  6. C#的特性Attribute

    一.什么是特性 特性是用于在运行时传递程序中各种元素(比如类.方法.结构.枚举.组件等)的行为信息的声明性标签,这个标签可以有多个.您可以通过使用特性向程序添加声明性信息.一个声明性标签是通过放置在它 ...

  7. 【算法】 string 转 int

    [算法] string 转 int 遇到的一道面试题, 当时只写了个思路, 现给出具体实现 ,算是一种比较笨的实现方式 public class StringToInt { /// <summa ...

  8. Django笔记 —— 基础部分总结

    最近在学习Django,打算玩玩网页后台方面的东西,因为一直很好奇但却没怎么接触过.Django对我来说是一个全新的内容,思路想来也是全新的,或许并不能写得很明白,所以大家就凑合着看吧- 本篇笔记(其 ...

  9. Unity 3d C#和Javascript脚本互相调用 解决方案(非原创、整理资料,并经过实践得来)

    Unity 3d C#和Javascript脚本互相调用 解决方案 1.背景知识 脚本的编译过程分四步: 1. 编译所有 ”Standard Assets”, “Pro Standard Assets ...

  10. Epplus下的一个将Excel转换成List的范型帮助类

    因为前一段时间公司做项目的时候,用到了Excel导入和导出,然后自己找了个插件Epplus进行操作,自己将当时的一些代码抽离出来写了一个帮助类. 因为帮助类是在Epplus基础之上写的,项目需要引用E ...