设 $L=L(\xi_0,\xi_1,\cdots,\xi_n)$ 关于变量 $\xi_0>0,\xi_1,\cdots,\xi_n$ 为严格凸的. 证明函数 $$\bex M=\cfrac{1}{\xi_0}L(\xi_0,\xi_1,\cdots,\xi_n) \eex$$ 关于变量 $$\bex \eta_0=\cfrac{1}{\xi_0},\quad \xi_1=\cfrac{\xi_1}{\xi_0},\cdots,\eta_n=\cfrac{\xi_n}{\xi_0} \eex$$ 是严格凸的.

证明: 仅对 $n=1$ 的情形加以证明. 先给出 $$\bex M=\eta_0 L\sex{\cfrac{1}{\eta_0},\cfrac{\eta_1}{\eta_0}}. \eex$$ 于是 $$\beex \bea M_{\eta_0}&=L+\eta_0 \sez{L_{\xi_0}\sex{-\cfrac{1}{\eta_0^2}} +L_{\xi_1}\sex{-\cfrac{\eta_1}{\eta_0^2}}}\\ &=L-\cfrac{1}{\eta_0}L_{\xi_0} -\cfrac{\eta_1}{\eta_0}L_{\xi_1},\\ M_{\eta_1}&=\eta_0L_{\xi_1}\cfrac{1}{\eta_0} =L_{\xi_1}; \eea \eeex$$ $$\beex \bea M_{\eta_0\eta_1} &=L_{\xi_0}\sex{-\cfrac{1}{\eta_0^2}} +L_{\xi_1}\sex{-\cfrac{\eta_1}{\eta_0^2}}\\ &\quad+\cfrac{1}{\eta_0^2}L_{\xi_0}-\cfrac{1}{\eta_0}\sez{ L_{\xi_0\xi_0}\sex{-\cfrac{1}{\eta_0^2}} +L_{\xi_0\xi_1}\sex{-\cfrac{\eta_1}{\eta_0^2}} }\\ &\quad+\cfrac{\eta_1}{\eta_0^2}L_{\xi_1} -\cfrac{\eta_1}{\eta_0^2} \sez{ L_{\xi_0\xi_1}\sex{-\cfrac{1}{\eta_0^2}} +L_{\xi_1\xi_1}\sex{-\cfrac{\eta_1}{\eta_0^2}} }\\ &=\cfrac{1}{\eta_0^3}\sex{ L_{\xi_0\xi_0} +2\eta_1L_{\xi_0\xi_1}+\eta_1^2L_{\xi_1\xi_1} }\\ &=\cfrac{1}{\eta_0^3} \sex{\ba{cc}1& \eta_1 \ea} \sex{\ba{cc} L_{\xi_0\xi_0}&L_{\xi_0\xi_1}\\ L_{\xi_0\xi_1}&L_{\xi_1\xi_1} \ea} \sex{\ba{cc} 1\\ \eta_1 \ea}\\ &>0, \eea \eeex$$ $$\beex \bea M_{\eta_0\eta_1} &=M_{\eta_1\eta_0}=L_{\xi_1\xi_0}\sex{-\cfrac{1}{\eta_0^2}} +L_{\xi_1\xi_1}\sex{-\cfrac{\eta_1}{\eta_0^2}}\\ &=-\cfrac{1}{\eta_0^2}\sex{L_{\xi_0\xi_1}+\eta_1 L_{\xi_1\xi_1}},\\ M_{\eta_1\eta_1}&=\cfrac{1}{\eta_0}L_{\xi_1\xi_1}; \eea \eeex$$ $$\beex \bea M_{\eta_0\eta_0}M_{\eta_1\eta_1}-M_{\eta_0\eta_1}^2 &=\cfrac{1}{\eta_0^4} \sex{L_{\xi_0\xi_0}+2\eta_1L_{\xi_0\xi_1}+\eta_1^2L_{\xi_1\xi_1}}L_{\xi_1\xi_1}\\ &\quad -\cfrac{1}{\eta_0^4} \sex{L_{\xi_0\xi_1}^2+2\eta_1L_{\xi_0\xi_1L_{\xi_1\xi_1} +\eta_1^2L_{\xi_1\xi_1}^2}}\\ &=\cfrac{1}{\eta_0^4}L_{\xi_0\xi_0}L_{\eta_1\eta_1}\\ &>0. \eea \eeex$$

[物理学与PDEs]第2章习题12 严格凸性的转换的更多相关文章

  1. [物理学与PDEs]第1章习题12 Coulomb 规范下电磁场的标势、矢势满足的方程

    试给出在 Coulomb 规范下, 电磁场的标势 $\phi$ 与矢势 ${\bf A}$ 所满足的方程. 解答: 真空中的 Maxwell 方程组为 $$\bee\label{1_10_12:eq} ...

  2. [物理学与PDEs]第2章习题参考解答

    [物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...

  3. [物理学与PDEs]第1章习题参考解答

    [物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...

  4. [物理学与PDEs]第3章习题参考解答

    [物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...

  5. [物理学与PDEs]第4章习题参考解答

    [物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...

  6. [物理学与PDEs]第5章习题参考解答

    [物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...

  7. [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性

    试证明: 在物质描述下, 动量矩守恒定律等价于第二 Piola 应力张量的对称性. 证明: 由 $$\beex \bea \int_{G_t}\rho\sex{{\bf y}\times\cfrac{ ...

  8. [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

    写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...

  9. [物理学与PDEs]第4章习题3 一维理想反应流体力学方程组的数学结构

    证明: Euler 坐标系下的一维反应流体力学方程组 (3. 10)-(3. 13) 也是一个一阶拟线性双曲型方程组. 证明: 由 (3. 10), (3. 12), (3. 13) 知 $$\bex ...

随机推荐

  1. 【English Teradata】名称缩写

    日常缩写 [GTM]Teradata Go-to-Market employees [GTS]Teradata Global Technical Support [GSC] [CS&S]Cus ...

  2. CSS伪元素:before/CSS伪元素:before/:after content 显示Font Awesome字体图标:after content 显示Font Awesome字体图标

    HTML <a href="javascript:volid(0);"><i class="icon-table"></i> ...

  3. UVALive - 3211 - Now or later(图论——2-SAT)

    Problem   UVALive - 3211 - Now or later Time Limit: 9000 mSec Problem Description Input Output Sampl ...

  4. 013_实践HTTP206状态:部分内容和范围请求

    HTTP 2xx范围内的状态码表明了:"客户端发送的请求已经被服务器接受并且被成功处理了".HTTP/1.1 200 OK是HTTP请求成功后的标准响应,当你在浏览器中打开www. ...

  5. Analyzing 'enq: HW - contention' Wait Event (Doc ID 740075.1)

    Analyzing 'enq: HW - contention' Wait Event (Doc ID 740075.1) In this Document   Symptoms   Cause   ...

  6. 前端——DOM

    什么是DOM? DOM是W3C(万维网联盟)的标准,是Document Object Model(文档对象模型)的缩写,它定义了访问HTML和XML文档的标准: “W3C文档对象模型(DOM)是中立于 ...

  7. .net后台以post方式调用http接口[转]

    string strResult = ""; try { HttpWebRequest myRequest = (HttpWebRequest)WebRequest.Create( ...

  8. 《React Native 精解与实战》书籍连载「Android 平台与 React Native 混合开发」

    此文是我的出版书籍<React Native 精解与实战>连载分享,此书由机械工业出版社出版,书中详解了 React Native 框架底层原理.React Native 组件布局.组件与 ...

  9. 关于for循环与setTimeout的延迟

    在for循环中使用setTimeout时,想使其每个setTimeout在上一个setTimeout的基础上进行延时,使用传入数组方式设置时间时,发现实际是按照每次设置的setTimeout的延时执行 ...

  10. NIO原理及案例使用

    什么是NIO Java提供了一个叫作NIO(New I/O)的第二个I/O系统,NIO提供了与标准I/O API不同的I/O处理方式.它是Java用来替代传统I/O API(自Java 1.4以来). ...