Cross-entropy Method(简称CEM)虽然是一种基于交叉熵的算法,但并不是我们熟知的监督学习中的交叉熵方法,与其说它是一种基于交叉熵的算法,倒不如说是一种基于蒙特卡洛和进化策略的算法。CEM算法不仅可以用作评估,也可以作为一种有效的优化算法,与进化算法(EAs)类似CEM是一种完全免梯度(gradients free)的算法。

这里引用维基百科上对Cross-entropy Method的解释[1]:

The cross-entropy (CE) method is a Monte Carlo method for importance sampling and optimization. It is applicable to both combinatorial and continuous problems, with either a static or noisy objective.

CEM算法的迭代训练过程可以分为两个阶段:

  • 根据采样概率分布进行重采样;
  • 通过最小化采样概率分布和目标概率分布的交叉熵来更新采样概率分布。

Importance sampling

CEM要解决的是这样一种问题,假设我们需要估计一个事件$H(x)$发生的期望:

$$\mathbb{E}_{u}[H(x)]=\int H(x)f(x;u)dx$$

最简单的方法就是利用朴素蒙特卡洛采样从真实概率密度函数$f(x;u)$中采样一些样本$x^{'}$,然后通过求均值估计期望,即:

$$\mathbb{E}_{u}[H(x)]=\frac{1}{N}\sum_{i=1}^{N}x_{i}^{'}$$

但如果事件$H(x)$是一种小概率事件,那么朴素蒙特卡洛模拟需要采样非常多的样本才能准确估计期望。针对这个问题,CEM算法引入了重要性采样(importance sampling)。

Importance sampling[2]的主要思想如下:

首先通过一个类似于目标概率分布的采样概率分布$f(x;v)$(其中$v$被称为reference parameter)来进行采样,则期望变为:

$$\mathbb{E}_{u}[H(x)]=\frac{1}{N}\sum_{i=1}^{N}x_{i}^{'}\frac{f(x;u)}{f(x;v)}$$

于是现在的目标变成了如何找到一个最优的采样概率函数$f(x;v^{*})$去指导采样出一些少量的样本来准确地估计期望。CEM在每次迭代中通过选取较好的采样样本(Elite samples)来更新采样概率函数的参数$v$,目的是减小当前采样概率函数$f(x;v)$与最优采样概率函数$f(x;v^{*})$的分布差距(即KL散度,相对熵)(PS:paper最后只用到了交叉熵,所以取名为CEM)。

Pseudo-code of CEM

下面给出一个以高斯分布作为采样概率分布的CEM伪代码:

# Step1: initialization
初始化采样概率分布参数:mu, sigma;
初始化当前迭代次数t=0,设置最大迭代次数max_its,样本个数N,精英样本个数Ne,以及采样方差的误差范围epsilon;
for t in range(0, max_its):
# Step2: 使用高斯分布进行随机采样
X = SampleGaussian(mu, sigma, N)
# Step3: 评估样本
S = EvaluateSamples(X)
# Step4: 重要性采样
X = sort(X, S)
mu = mean(X[0:Ne-1])
sigma = var(X[0:Ne-1])
if sigma > epsilon:
break
# Step5: 返回精英样本的均值
return mu

CEM && RL

注:以下内容引自博文《进化策略优化算法CEM(Cross Entropy Method)》[3]。

CEM也可以用来求解马尔可夫决策过程,也就是强化学习问题。我们知道,强化学习也是一种动态规划过程,在某个状态下选择某个动作就像在某个节点选择路径一样,整个过程就是一个从初始状态到末状态的路径规划问题,只不过我们希望得到一条能最大化收益的路径。在这种考虑下,就可以用CEM建模了,我们让一条完整的路径成为一个样本$x=(s_0,a_0,s_1,a_1,…,s_n,a_n)$,路径获得的总收益为$S(x)=\sum_{i=0}^{N} r(s_i,a_i)$,目标是最大化这个$S(x)$,那么如何采样出这些样本呢?我们可以构建一个$p$矩阵:矩阵行表示状态,列表示动作,如$p_{ij}$表示在状态$s_i$下执行$a_j$动作的概率,我们通过对这个$p$矩阵进行多次采样就可以获得多个样本,然后选出$S(x)$较高的样本用来更新$p$矩阵,不断迭代,最终找到最优$\hat{p}$矩阵。

这是一种类似于策略迭代(policy iteration)的强化学习方法:通过$p$矩阵找到在每一步状态下各个动作的概率来形成决策策略,但参数更新并没有用到梯度。从另外一个角度,你也可以认为这是一种值迭代(value iteration)的强化学习方法,此时$p$矩阵就是经典Q-learning中的$Q$矩阵,只不过$Q$矩阵中第$i$行第$j$列元素表示的是状态$s_i$下动作$a_j$的未来收益的期望,基于贝尔曼方程(Bellman equation)来更新Q值;而$p$矩阵表示的是概率值,通过交叉墒来更新。

Reference

[1] 维基百科:Cross-entropy Method

[2] 维基百科:Importance sampling

[3] 进化策略优化算法CEM(Cross Entropy Method)

[Reinforcement Learning] Cross-entropy Method的更多相关文章

  1. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor

    Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor 20 ...

  2. Awesome Reinforcement Learning

    Awesome Reinforcement Learning A curated list of resources dedicated to reinforcement learning. We h ...

  3. 18 Issues in Current Deep Reinforcement Learning from ZhiHu

    深度强化学习的18个关键问题 from: https://zhuanlan.zhihu.com/p/32153603 85 人赞了该文章 深度强化学习的问题在哪里?未来怎么走?哪些方面可以突破? 这两 ...

  4. (转) Playing FPS games with deep reinforcement learning

    Playing FPS games with deep reinforcement learning 博文转自:https://blog.acolyer.org/2016/11/23/playing- ...

  5. (zhuan) Deep Reinforcement Learning Papers

    Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...

  6. (转) Deep Reinforcement Learning: Playing a Racing Game

    Byte Tank Posts Archive Deep Reinforcement Learning: Playing a Racing Game OCT 6TH, 2016 Agent playi ...

  7. getting started with building a ROS simulation platform for Deep Reinforcement Learning

    Apparently, this ongoing work is to make a preparation for futural research on Deep Reinforcement Le ...

  8. (转) Deep Learning in a Nutshell: Reinforcement Learning

    Deep Learning in a Nutshell: Reinforcement Learning   Share: Posted on September 8, 2016by Tim Dettm ...

  9. (转) Deep Reinforcement Learning: Pong from Pixels

    Andrej Karpathy blog About Hacker's guide to Neural Networks Deep Reinforcement Learning: Pong from ...

随机推荐

  1. IKAnalyzer结合Lucene实现中文分词

    1.基本介绍 随着分词在信息检索领域应用的越来越广泛,分词这门技术对大家并不陌生.对于英文分词处理相对简单,经过拆分单词.排斥停止词.提取词干的过程基本就能实现英文分词,单对于中文分词而言,由于语义的 ...

  2. windows10滑轮bug

    今天我突然发现我一点也忍受不了在UWP应用.wi10窗口.设置等界面无法使用鼠标滑轮了.这个bug已经困扰了我差不多一年了,从买了这台笔记本就开始了.而且这个问题在中间的某一次升级系统后,也修复了,但 ...

  3. Windonws基本命令手册

    1. gpedit.msc-----组策略  2. sndrec32-------录音机 3. Nslookup-------IP地址侦测器 4. explorer-------打开资源管理器 5. ...

  4. Chrome 清除当前网站下的缓存

    打开开发者工具(F12),选择 Network--Disable cache 即可.需要清除某网站缓存时 F12 打开开发者工具就会自动清除这个网站的缓存,而不必清除所有网站的缓存了. 如评论中大佬所 ...

  5. Elastic Stack-Elasticsearch使用介绍(三)

    一.前言     上一篇说了这篇要讲解Search机制,但是在这个之前我们要明白下文件是怎么存储的,我们先来讲文件的存储然后再来探究机制: 二.文档存储 之前说过文档是存储在分片上的,这里要思考一个问 ...

  6. [kuangbin带你飞]专题二十二 区间DP----POJ - 2955

    区间DP标准入门题目. 区间DP大概思路是这样的. 第一层枚举长度,因为我们需要从小区间一步步推到大区间 第二层枚举左端点,那么右端点就定了. 第三层枚举间断点,由间断点合并得到大区间. 这道括号匹配 ...

  7. SequoiaDB 巨杉数据库

    传统单点数据库的容量瓶颈,仅仅是分布式数据库所解决的问题之一.更重要的是在未来微服务化应用开发以及云化平台的趋势下,应用不再以“烟囱式”的中间件加数据库模式进行构建,而是采用数千甚至上万的微服务程序构 ...

  8. powershell 常用命令之取磁盘分区信息

    //查看mac 地址 PS C:\Users\yyy> get-wmiobject -class Win32_NetworkAdapterConfiguration -namespace &qu ...

  9. button样式的demo

    <style type="text/css"> .styletop{margin-top: 200px;} .stylea{ margin-left:550px;} ; ...

  10. WebSocket群聊与单聊

    一 . WebSocket实现群聊 py文件代码 # py文件 from flask import Flask, render_template, request from geventwebsock ...