BZOJ 3158: 千钧一发
3158: 千钧一发
Time Limit: 10 Sec Memory Limit: 512 MB
Submit: 1201 Solved: 446
[Submit][Status][Discuss]
Description
Input
第一行一个正整数N。
第二行共包括N个正整数,第 个正整数表示Ai。
第三行共包括N个正整数,第 个正整数表示Bi。
Output
共一行,包括一个正整数,表示在合法的选择条件下,可以获得的能量值总和的最大值。
Sample Input
4
3 4 5 12
9 8 30 9
Sample Output
HINT
1<=N<=1000,1<=Ai,Bi<=10^6
Source
网络流求最小割,很机智的建图方式。
发现可以把数字按照奇偶性分类,奇数一定满足1条件,偶数一定满足2条件,WOC,然后就二分图了?
暴力判断奇数和偶数是否不能在同一集合中,如不能在同一集合,在其中加一天正无穷的边,表示不可割。
其余点按奇偶性分别向S,T连bi的边即可,Σbi - 最小割就是最终答案。
#include <cmath>
#include <cstdio>
#include <cstring> typedef long long lnt; const int siz = ;
const int inf = ; int n;
int a[siz];
int b[siz]; int tot;
int s, t;
int hd[siz];
int to[siz];
int fl[siz];
int nt[siz]; inline void add(int u, int v, int f)
{
nt[tot] = hd[u]; to[tot] = v; fl[tot] = f; hd[u] = tot++;
nt[tot] = hd[v]; to[tot] = u; fl[tot] = ; hd[v] = tot++;
} int dep[siz]; inline bool bfs(void)
{
static int que[siz];
static int head, tail; memset(dep, , sizeof(dep));
head = , tail = ;
que[tail++] = s;
dep[s] = ; while (head != tail)
{
int u = que[head++], v; for (int i = hd[u]; ~i; i = nt[i])
if (!dep[v = to[i]] && fl[i])
dep[que[tail++] = v] = dep[u] + ;
} return dep[t];
} int cur[siz]; int min(int a, int b)
{
return a < b ? a : b;
} int dfs(int u, int f)
{
if (u == t || !f)
return f; int used = , flow, v; for (int i = cur[u]; ~i; i = nt[i])
if (dep[v = to[i]] == dep[u] + && fl[i])
{
flow = dfs(v, min(f - used, fl[i])); used += flow;
fl[i] -= flow;
fl[i^] += flow; if (used == f)
return f; if (fl[i])
cur[u] = i;
} if (!used)
dep[u] = ; return used;
} inline int maxFlow(void)
{
int maxFlow = , newFlow; while (bfs())
{
for (int i = s; i <= t; ++i)
cur[i] = hd[i]; while (newFlow = dfs(s, inf))
maxFlow += newFlow;
} return maxFlow;
} inline lnt sqr(lnt x)
{
return x * x;
} int gcd(int x, int y)
{
return y ? gcd(y, x % y) : x;
} inline bool check(int x, int y)
{
if (gcd(x, y) != )
return false; lnt t = sqr(x) + sqr(y);
if (sqr(sqrt(t)) != t)
return false; return true;
} signed main(void)
{
scanf("%d", &n); for (int i = ; i <= n; ++i)
scanf("%d", a + i); for (int i = ; i <= n; ++i)
scanf("%d", b + i); s = , t = n + ; memset(hd, -, sizeof(hd)); for (int i = ; i <= n; ++i)
if (a[i] & )
add(s, i, b[i]);
else
add(i, t, b[i]); for (int i = ; i <= n; ++i)
for (int j = ; j <= n; ++j)
if (a[i] & )if (!(a[j] & ))
if (check(a[i], a[j]))
add(i, j, inf); int sum = ; for (int i = ; i <= n; ++i)
sum += b[i]; printf("%d\n", sum - maxFlow());
}
@Author: YouSiki
BZOJ 3158: 千钧一发的更多相关文章
- bzoj 3158 千钧一发(最小割)
3158: 千钧一发 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 767 Solved: 290[Submit][Status][Discuss] ...
- bzoj 3158 千钧一发——网络流
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3158 发现偶数之间一定满足第二个条件:奇数之间一定满足第一个条件 ( \( (2m+1)^{ ...
- bzoj 3158 千钧一发 —— 最小割
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3158 \( a[i] \) 是奇数则满足条件1,是偶数则显然满足条件2: 因为如果把两个奇数 ...
- BZOJ 3158 千钧一发 (最大流->二分图带权最大独立集)
题面:BZOJ传送门 和方格取数问题很像啊 但这道题不能像网格那样黑白染色构造二分图,所以考虑拆点建出二分图 我们容易找出数之间的互斥关系,在不能同时选的两个点之间连一条流量为$inf$的边 由于我们 ...
- bzoj 3158: 千钧一发【最小割】
这个条件非常妙啊,奇数和奇数一定满足1,因为\( (2a+1)^2+(2b+1)^2=4a^2+4a+4b^2+4b+2=2(2(a^2+a+b^2+b)+1) \)里面这个一定不是平方数因为除二后是 ...
- BZOJ 3158 千钧一发 最小割
分析: 偶数对满足条件2,所有奇数对满足条件1. 如果你能一眼看出这个规律,这道题就完成了一半. 我们只需要将数分为两类,a值为奇数,就从S向这个点连容量为b值的边,a值为偶数,就从这个点向T连容量为 ...
- BZOJ 3275: Number
3275: Number Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 874 Solved: 371[Submit][Status][Discus ...
- 【BZOJ】【3158】千钧一发
网络流/最小割 这题跟BZOJ 3275限制条件是一样的= =所以可以用相同的方法去做……只要把边的容量从a[i]改成b[i]就行了- (果然不加当前弧优化要略快一点) /************** ...
- 【BZOJ-3275&3158】Number&千钧一发 最小割
3275: Number Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 748 Solved: 316[Submit][Status][Discus ...
随机推荐
- python征程3.1(列表,迭代,函数,dic,set,的简单应用)
1.列表的切片. 1.对list进行切片.'''name=["wangshuai","wangchuan","wangjingliang", ...
- 供应链需求调研CheckList
总体(General) 基本情况 1. 企业地址.邮编.电话.传真,项目联系人等基本资料. 2. 企业经营范围,产品线和主导产品. 3. 企业近几年的产值及销售额. 4. 企业 ...
- QT数据库连接的几个重要函数的使用及注意事项(原创)
注:在这里数据库对象等同于数据库连接对象,也就是QSqlDatabase类的对象 QSqlDatabase QSqlDatabase::addDatabase((const QString & ...
- canvas 制作flappy bird(像素小鸟)全流程
flappy bird制作全流程: 一.前言 像素小鸟这个简单的游戏于2014年在网络上爆红,游戏上线一段时间内appleStore上的下载量一度达到5000万次,风靡一时, 近年来移动web的普及为 ...
- 联机分析处理(OLAP)到底是什么?
联机分析处理 (OLAP) 的概念最早是由关系数据库之父E.F.Codd于1993年提出的,OLAP的提出引起了很大的反响,OLAP作为一类产品同联机事务处理 (OLTP) 明显区分开来. 当今的数据 ...
- CRM sql 查询
转自博友"菜刀-soft"! 查询实体信息: --查询实体信息,实体名称:account select * from MetadataSchema.Entity where nam ...
- Linux常用命令大全
系统信息 arch 显示机器的处理器架构(1) uname -m 显示机器的处理器架构(2) uname -r 显示正在使用的内核版本 dmidecode -q 显示硬件系统部件 - (SMBIO ...
- dyld 加载 Mach-O
➠更多技术干货请戳:听云博客 前言 最近看 ObjC的runtime 是怎么实现 +load 钩子函数的实现.进而引申分析了 dyld 处理 Mach-O 的这部分机制. 1.简单分析 Mach-O ...
- 几款Git GUI客户端工具
工欲善其事,必先利其器. 作为一名开发人员,你不可能不知道git,无论你是开发自己的开源项目还是和团队一起进行大规模产品的开发,git都已经是源代码管理工具的首选.当然,那些hardcore deve ...
- Nginx 访问日志轮询切割
Nginx 访问日志轮询切割脚本 #!/bin/sh Dateformat=`date +%Y%m%d` Basedir="/application/nginx" Nginxlog ...