# 思路
首先想到费用流。
对于每个点拆点。然后考虑我们怎样才能保证每个点只被用一次。
如果$i$与$j$满足条件。那么就从$i$向$j$连一条边并且从$j$向$i$连一条边。这样每次增广的时候我们都可以看作某一条边被增广了两次。显然从$i$到$j$和从$j$到$i$的边是等价的。也就是说,如果当前增广这两个点之间的边更优秀,那么在增广完成从$i$到$j$和从$j$到$i$这两条边流量变为$0$之前不回去增广其他的边。
比较难解释,仔细想一下可以发现是对的。这样最后我们找出的流量实际上是答案的两倍。除二即可。
然后还要考虑题目中对于价值的限制。我们把价值当作费用,每次增广费用最大的路径。直到如果再增广费用变为负数为止。
# 代码
```cpp=
/*
* @Author: wxyww
* @Date: 2019-02-17 14:52:25
* @Last Modified time: 2019-02-17 19:36:45
*/
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
typedef long long ll;
const int N = 410,M = 1000000 + 100,INF = 1e9;
ll read() {
ll x=0,f=1;char c=getchar();
while(c'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&cq;
int S,T;
bool pd(int x,int y) {
if(x > 1);
return 0;
}
```

bzoj4514 数字配对的更多相关文章

  1. [bzoj4514]数字配对[费用流]

    今年SDOI的题,看到他们在做,看到过了一百多个人,然后就被虐惨啦... 果然考试的时候还是打不了高端算法,调了...几天 默默地yy了一个费用流构图: 源连所有点,配对的点连啊,所有点连汇... 后 ...

  2. [SDOI2016][bzoj4514] 数字配对 [费用流]

    题面 传送门 思路 一个数字能且只能匹配一次 这引导我们思考:一次代表什么?代表用到一定上限(b数组)就不能再用,同时每用一次会产生价值(c数组) 上限?价值?网络流! 把一次匹配设为一点流量,那产生 ...

  3. 【bzoj4514】: [Sdoi2016]数字配对 图论-费用流

    [bzoj4514]: [Sdoi2016]数字配对 好像正常的做法是建二分图? 我的是拆点然后 S->i cap=b[i] cost=0 i'->T cap=b[i] cost=0 然后 ...

  4. 【BZOJ4514】[Sdoi2016]数字配对 费用流

    [BZOJ4514][Sdoi2016]数字配对 Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ...

  5. 【BZOJ-4514】数字配对 最大费用最大流 + 质因数分解 + 二分图 + 贪心 + 线性筛

    4514: [Sdoi2016]数字配对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 726  Solved: 309[Submit][Status ...

  6. 【BZOJ4514】【SDOI2016】数字配对 [费用流]

    数字配对 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 有 n 种数字,第 i 种数字是 ...

  7. SDOI 2016 数字配对

    题目大意:给定n个数字以及每个数字的个数和权值,将满足条件的数字配对,使得总代价不小于0,且配对最多 最大费用最大流拆点,对于每个点,连一条由S到该点的边,容量为b,花费为0,再连一条到T的边 对于每 ...

  8. 图论(费用流):BZOJ 4514 [Sdoi2016]数字配对

    4514: [Sdoi2016]数字配对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 820  Solved: 345[Submit][Status ...

  9. BZOJ 4514: [Sdoi2016]数字配对 [费用流 数论]

    4514: [Sdoi2016]数字配对 题意: 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数 ...

随机推荐

  1. Python文件操作之把臂入林

    文件操作1.打开文件open(file, mode='r', buffering=None, encoding=None, errors=None, newline=None, closefd=Tru ...

  2. c/c++ 多线程 thread_local 类型

    多线程 thread_local 类型 thread_local变量是C++ 11新引入的一种存储类型. thread_local关键字修饰的变量具有线程周期(thread duration), 这些 ...

  3. FPGA配置OV5640摄像头及RGB图像数据采集

    本文设计思想采用明德扬至简设计法.在做摄像头数据采集处理之前,需要配置OV5640传感器内部寄存器使其按要求正常工作,详细内容请参见<OV5640自动对焦照相模组应用指南>.首先要关注OV ...

  4. 【原创】Windows平台下Git的安装与配置

    一.下载     msysgit是Git for Windows版,其Home Page为:http://msysgit.github.io/ 点击页面中“Download”进入下载列表.可根据个人喜 ...

  5. .NET Core跨平台部署

    目录 .NET Core跨平台部署 1. Windows-IIS 1.1 安装.NET Core Windows Server Hosting 1.2 配置应用程序池 1.3 使用发布文件 2 Lin ...

  6. Django 【认证系统】auth

    本篇内容 介绍Django框架提供的auth 认证系统 方法: 方法名 备注 create_user 创建用户 authenticate 登录验证 login 记录登录状态 logout 退出用户登录 ...

  7. [LeetCode]2. 两数相加

    题目链接:https://leetcode-cn.com/problems/add-two-numbers/ 题目描述: 给出两个 非空 的链表用来表示两个非负的整数.其中,它们各自的位数是按照 逆序 ...

  8. redis 基本原理及安装

    一:什么是redis? Redis 是一个开源的,高性能的,基于键值对的缓存与存储系统.通过提供多种键值数据类型来适应不同场景下的缓存与存储需求. 二:redis数据库有什么优点? Redis数据库中 ...

  9. python之pickle

    #!/usr/bin/python # -*- coding: UTF- -*- ''' ''' import pickle # pickle 只能Python识别 不适用于别的语言 li = [, ...

  10. 转 HttpClient 设置连接超时时间

    要: HttpClient 4.5版本升级后,设置超时时间的API又有新的变化,请大家关注. HttpClient升级到4.5版本后,API有很多变化,HttpClient 4之后,API一直没有太稳 ...