Brackets
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6033   Accepted: 3220

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …,im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6

Source

 
题意:给你一个串 问你有多少可匹配的括号  ‘(’   ')'   '['  ']'
 
题解:dp[i][j] 表示 区间i~j有多少可匹配的括号
状态转移方程:dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]) k(为分界点)
但是如果a[i]与a[j]匹配 还需要增加判断 dp[i][j]=max(dp[i][j],dp[i+1][j-1]+2)
来确保最优。
做了一些区间dp,要注意的几点
1.分界点的枚举
2.边界的处理
3.递推过程中的i,j
4.区间dp就是逆着状态递推(dp不都是这样吗 zz)
 
 /******************************
code by drizzle
blog: www.cnblogs.com/hsd-/
^ ^ ^ ^
O O
******************************/
//#include<bits/stdc++.h>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<map>
#include<algorithm>
#include<cmath>
#define ll __int64
#define PI acos(-1.0)
#define mod 1000000007
char a[];
int dp[][];
using namespace std;
int main()
{
while(gets(a))
{
if(a[]=='e')
break;
int len=strlen(a);
memset(dp,,sizeof(dp));
/*for(int i=; i<len-; i++)
{
if(((a[i]=='(')&&(a[i+]==')'))||((a[i]=='[')&&(a[i+]==']')))//边界处理
dp[i][i+]=;
}*/此处删去仍然可以 ac 细细想一下 其实这个边界 已经在下面的if中处理掉了
for(int i=len-; i>=; i--)
{
for(int j=i+; j<=len-; j++)
{
for(int k=i; k<=j; k++)
dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+][j]);
if(((a[i]=='(')&&(a[j]==')'))||((a[i]=='[')&&(a[j]==']')))
dp[i][j]=max(dp[i][j],dp[i+][j-]+);
}
}
cout<<dp[][len-]<<endl;;
}
return ;
}

poj 2955 括号匹配 区间dp的更多相关文章

  1. poj 2955 Brackets 括号匹配 区间dp

    题意:最多有多少括号匹配 思路:区间dp,模板dp,区间合并. 对于a[j]来说: 刚開始的时候,转移方程为dp[i][j]=max(dp[i][j-1],dp[i][k-1]+dp[k][j-1]+ ...

  2. POJ 2955 括号匹配,区间DP

    题意:给你一些括号,问匹配规则成立的括号的个数. 思路:这题lrj的黑书上有,不过他求的是添加最少的括号数,是的这些括号的匹配全部成立. 我想了下,其实这两个问题是一样的,我们可以先求出括号要匹配的最 ...

  3. poj2955括号匹配 区间DP

    Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5424   Accepted: 2909 Descript ...

  4. 括号匹配 区间DP (经典)

    描述给你一个字符串,里面只包含"(",")","[","]"四种符号,请问你需要至少添加多少个括号才能使这些括号匹配起来 ...

  5. POJ - 2955 Brackets (区间DP)

    题目: 给出一个有括号的字符串,问这个字符串中能匹配的最长的子串的长度. 思路: 区间DP,首先枚举区间长度,然后在每一个长度中通过枚举这个区间的分割点来更新这个区间的最优解.还是做的少. 代码: / ...

  6. POJ 2955 Brackets(区间DP)题解

    题意:问最多有几个括号匹配 思路:用dp[i][j]表示i到j最多匹配,若i和j构成匹配,那么dp[i][j] = dp[i + 1][j - 1] + 2,剩下情况dp[i][j] = max(dp ...

  7. Poj 2955 brackets(区间dp)

    Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7795   Accepted: 4136 Descript ...

  8. POJ 2955 Brackets (区间DP,常规)

    题意: 给出一个字符串,其中仅仅含 “ ( ) [ ] ” 这4钟符号,问最长的合法符号序列有多长?(必须合法的配对,不能混搭) 思路: 区间DP的常规问题吧,还是枚举区间[i->j]再枚举其中 ...

  9. poj 2955 Brackets 【 区间dp 】

    话说这题自己折腾好久还是没有推出转移的公式来啊------------------ 只想出了dp[i][j]表示i到j的最大括号匹配的数目--ค(TㅅT)------------------- 后来搜 ...

随机推荐

  1. bzoj 1911: [Apio2010]特别行动队

    #include<cstdio> #include<iostream> #define M 1000009 #define ll long long using namespa ...

  2. hdu 4605 Magic Ball Game

    http://acm.hdu.edu.cn/showproblem.php?pid=4605 可以离线求解 把所以可能出现的 magic ball  放在一个数组里(去重),从小到大排列 先不考虑特殊 ...

  3. 安装svnx2出现 Make sure an svn tool (≥ v1.6) is present in the folder: “/usr/bin”

    安装svnx2出现 Make sure an svn tool (≥ v1.6) is present in the folder: “/usr/bin” 是因为svnx2需要用到svn的地址,修改为 ...

  4. IT公司100题-1-二叉树转换为双链表

    问题描述: 输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表.要求不能创建任何新的结点,只调整指针的指向. 10   /   \  6      14/  \    /   \4   8 1 ...

  5. struts中拦截器的开发

    1.开发Interceptor类 用户自定义的拦截器一般需要继承AbstractInterceptor类,重写intercept方法 public class UserInterceptor exte ...

  6. [vijos P1023] Victoria的舞会3

    这… 本来想学习一下Tarjan算法的,没想到码都码好了发现这题不是求强连通分量而是简单的连通分量…图论基础都还给老师了啊啊啊!最后深搜通通解决! v标记是否被访问过,scc标记每个的祖先(本来想写T ...

  7. Program E-- CodeForces 18C

    Description Once Bob took a paper stripe of n squares (the height of the stripe is 1 square). In eac ...

  8. 一篇介绍jquery很好的

    本文基于jQuery1.7.1版本,是对官方API的整理和总结,完整的官方API见http://api.jquery.com/browser/ 0.总述 jQuery框架提供了很多方法,但大致上可以分 ...

  9. allegro si(三)

    前言:si的教程市面上是很少的,layout是台湾工程师的强项,还有就是日本人,国人爱用AD. si的教程中靠谱的还是张飞的收费课程,还有华为的资料. Cadence SI 仿真实验步骤如下: 1.熟 ...

  10. GPRS Sniffing Tutorial

    - Download sources into ~/gprs_sniffer git clone git://git.osmocom.org/osmocom-bb.git git clone git: ...