BZOJ 1010 玩具装箱
斜率优化。
事实上是选一个大于某个数的最小斜率。维护下凸壳。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxn 50050
using namespace std;
long long n,c,s[maxn],dp[maxn],q[maxn],l=,r=;
double slop(long long j,long long k)
{
return (dp[k]-dp[j]+(s[k]+c)*(s[k]+c)-(s[j]+c)*(s[j]+c))/(2.0*(s[k]-s[j]));
}
void dps()
{
q[++r]=;
for (long long i=;i<=n;i++)
{
while ((l<r) && (slop(q[l],q[l+])<s[i])) l++;
long long t=q[l];
dp[i]=dp[t]+(s[i]-s[t]-c)*(s[i]-s[t]-c);
while ((l<r) && (slop(q[r-],i)<slop(q[r-],q[r]))) r--;
q[++r]=i;
}
}
int main()
{
scanf("%lld%lld",&n,&c);c++;
for (long long i=;i<=n;i++) scanf("%lld",&s[i]);
for (long long i=;i<=n;i++) s[i]+=s[i-];
for (long long i=;i<=n;i++) s[i]+=i;
dps();
printf("%lld\n",dp[n]);
return ;
}
BZOJ 1010 玩具装箱的更多相关文章
- 【斜率DP】BZOJ 1010:玩具装箱
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7537 Solved: 2888[Submit][St ...
- bzoj 1010 玩具装箱toy -斜率优化
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具 ...
- BZOJ 1010 玩具装箱toy(斜率优化DP)
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他 ...
- BZOJ 1010 玩具装箱toy(四边形不等式优化DP)(HNOI 2008)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
- BZOJ 1010: 玩具装箱toy (斜率优化dp)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
- BZOJ 1010 玩具装箱(斜率优化DP)
dp[i]=min(dp[j]+(sum[i]-sum[j]+i-j-1-L)^2) (j<i) 令f[i]=sum[i]+i,c=1+l 则dp[i]=min(dp[j]+(f[i]-f[j] ...
- HYSBZ 1010 玩具装箱toy (决策单调DP)
题意: 有n个玩具,要将它们分为若干组,玩具长度C可能不同.给出n个玩具的摆放顺序,连续的任意多个玩具都可以成为一组.区间[i,j]成为一组的费用是cost=(j-i+Sigma(Ck)-L)2且i& ...
- 【BZOJ】【1010】【HNOI2008】玩具装箱Toy
DP/斜率优化 根据题目描述很容易列出动规方程:$$ f[i]=min\{ f[j]+(s[i]-s[j]+i-j-1-L)^2 \}$$ 其中 $$s[i]=\sum_{k=1}^{i} c[k] ...
- 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9330 Solved: 3739 Descriptio ...
随机推荐
- HDU 1098 Ignatius's puzzle(数学归纳)
以下引用自http://acm.hdu.edu.cn/discuss/problem/post/reply.php?postid=8466&messageid=2&deep=1 题意以 ...
- .bash_profile和.bashrc的区别(如何设置生效)
/etc/profile:此文件为系统的每个用户设置环境信息,当用户第一次登录时,该文件被执行.并从/etc/profile.d目录的配置文件中搜集shell的设置. /etc/bashrc:为每一个 ...
- 屏蔽wordpress升级提示
根据自己的需要,挑选适合的代码放在主题的functions.php文件中就可以了 /* 去除 WordPress 後台升級提示 */ // 2.8 ~ 2.9: add_filter('pre_tra ...
- C# 获取windows特殊路径
虽然是古老的问题,最近用到这个,查一下还不少东东呐 一.使用Environment.SpecialFolder 该方法最简单,直接使用即可,只是提供的特殊路径比较少. (1)使用方法:string p ...
- SOLID 原则
世纪的前几年里,“ Uncle Bob”Robert Martin 引入了用OOP 开发软件的五条原 则,其目的是设计出更易于维护的高质量系统.无论是设计新应用程序,还是重构现有基 本代码,这些 S ...
- Struts2 Convention插件的使用(1)
刚刚查阅官方文档(convention-plugin.html)并学习了Struts2的Convention插件,文章这里只作为一个笔记,建议大家去看官方文档比较清晰和全面. 需要在项目添加这些包 c ...
- Eclipse下Python的MySQLdb的安装以及相关问题
前提是要安装好Python以及eclipse和MySQL的相应版本.本文Python为2.7,MySQL为5.1Eclipse为3.6.2 下载完MySQLdb以后,直接安装即可.在eclipse中启 ...
- sql 数据库换行
制表符 CHAR(9) 换行符 CHAR(10) 回车 CHAR(13)
- redis系列之redis是什么
一.简介 REmote DIctionary Server(Redis),redis是一个基于内存的单机key/value系统,类似memcached,但支持value为多种形式,包括:字符串(str ...
- 2011 ACM/ICPC 成都赛区(为2013/10/20成都现场赛Fighting)
hdu 4111 Alice and Bob 博弈:http://www.cnblogs.com/XDJjy/p/3350014.html hdu 4112 Break the Chocolate ...