大数据平台搭建(hadoop+spark)

一.基本信息

1. 服务器基本信息

主机名 ip地址 安装服务
spark-master 172.16.200.81 jdk、hadoop、spark、scala
spark-slave01 172.16.200.82 jdk、hadoop、spark
spark-slave02 172.16.200.83 jdk、hadoop、spark
spark-slave03 172.16.200.84 jdk、hadoop、spark

2. 软件基本信息

软件名 版本 安装路径
oracle jdk 1.8.0_111 /usr/local/jdk1.8.0_111
hadoop 2.7.1 /usr/local/hadoop-2.7.3
spark 2.0.2 /usr/local/spark-2.0.2
scala 2.12.1 usr/local/2.12.1

3.环境变量汇总

############# java ############
export JAVA_HOME=/usr/local/jdk1.8.0_111
export PATH=$JAVA_HOME/bin:$PATH
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar ########### hadoop ##########
export HADOOP_HOME=/usr/local/hadoop-2.7.3
export PATH=$JAVA_HOme/bin:$HADOOP_HOME/bin:$PATH
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin ######### spark ############
export SPARK_HOME=/usr/local/spark-2.0.2
export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin ######### scala ##########
export SCALA_HOME=/usr/local/scala-2.12.1
export PATH=$PATH:$SCALA_HOME/bin

4. 基本环境配置(master、slave相同操作)

4.1 配置jdk

cd /usr/loca/src/
tar -C /usr/local/ -xzf /usr/local/src/jdk-8u111-linux-x64.tar.gz

4.2 配置java环境变量

vim /etc/profile

添加如下信息

######### jdk ############
export JAVA_HOME=/usr/local/jdk1.8.0_111
export PATH=$JAVA_HOME/bin:$PATH
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar

4.3 刷新配置文件:

source /etc/profile

4.4 配置hosts

vim /etc/hosts
172.16.200.81 spark-master
172.16.200.82 spark-slave1
172.16.200.83 spark-slave2

4.5 配置免密码

生成密钥对

ssh-keygen

如果密钥不设置密码,则连按几下回车

先配置本机免密码登录

cd /root/.ssh
cat id_rsa.pub > authorized_keys
chmod 600 authorized_keys

再将其它主机id_rsa.pub 内容追加到 authorized_keys中,三台配置完成后即可实现免密码登录

二.大数据平台搭建

1. 搭建Hadoop(master、slave相同操作)

1.1 安装hadoop

cd /usr/loca/src/
tar -C /usr/local/ -xzf hadoop-2.7.3.tar.gz

1.2 配置hadoop环境变量

vim /etc/profile

添加如下信息

######### hadoop ############
export HADOOP_HOME=/usr/local/hadoop-2.7.3
export PATH=$JAVA_HOme/bin:$HADOOP_HOME/bin:$PATH
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

1.3 刷新配置文件:

source /etc/profile

1.4 修改hadoop配置文件

cd /usr/local/hadoop-2.7.3/etc/hadoop

查看

root@spark-master hadoop]# ll
总用量 152
-rw-r--r--. 1 root root 4436 8月 18 09:49 capacity-scheduler.xml
-rw-r--r--. 1 root root 1335 8月 18 09:49 configuration.xsl
-rw-r--r--. 1 root root 318 8月 18 09:49 container-executor.cfg
-rw-r--r--. 1 root root 1037 12月 21 14:58 core-site.xml
-rw-r--r--. 1 root root 3589 8月 18 09:49 hadoop-env.cmd
-rw-r--r--. 1 root root 4235 12月 21 11:17 hadoop-env.sh
-rw-r--r--. 1 root root 2598 8月 18 09:49 hadoop-metrics2.properties
-rw-r--r--. 1 root root 2490 8月 18 09:49 hadoop-metrics.properties
-rw-r--r--. 1 root root 9683 8月 18 09:49 hadoop-policy.xml
-rw-r--r--. 1 root root 1826 12月 21 14:11 hdfs-site.xml
-rw-r--r--. 1 root root 1449 8月 18 09:49 httpfs-env.sh
-rw-r--r--. 1 root root 1657 8月 18 09:49 httpfs-log4j.properties
-rw-r--r--. 1 root root 21 8月 18 09:49 httpfs-signature.secret
-rw-r--r--. 1 root root 620 8月 18 09:49 httpfs-site.xml
-rw-r--r--. 1 root root 3518 8月 18 09:49 kms-acls.xml
-rw-r--r--. 1 root root 1527 8月 18 09:49 kms-env.sh
-rw-r--r--. 1 root root 1631 8月 18 09:49 kms-log4j.properties
-rw-r--r--. 1 root root 5511 8月 18 09:49 kms-site.xml
-rw-r--r--. 1 root root 11237 8月 18 09:49 log4j.properties
-rw-r--r--. 1 root root 931 8月 18 09:49 mapred-env.cmd
-rw-r--r--. 1 root root 1383 8月 18 09:49 mapred-env.sh
-rw-r--r--. 1 root root 4113 8月 18 09:49 mapred-queues.xml.template
-rw-r--r--. 1 root root 1612 12月 21 12:03 mapred-site.xml
-rw-r--r--. 1 root root 56 12月 21 16:30 slaves
-rw-r--r--. 1 root root 2316 8月 18 09:49 ssl-client.xml.example
-rw-r--r--. 1 root root 2268 8月 18 09:49 ssl-server.xml.example
-rw-r--r--. 1 root root 2191 8月 18 09:49 yarn-env.cmd
-rw-r--r--. 1 root root 4564 12月 21 11:19 yarn-env.sh
-rw-r--r--. 1 root root 1195 12月 21 14:24 yarn-site.xml

1.4.1 修改hadoop全局配置文件

vim core-site.xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> <!-- Put site-specific property overrides in this file. --> <configuration>
<!--配置namenode的地址--> <property>
<name>fs.defaultFS</name>
<value>hdfs://172.16.200.81:9000</value>
</property>
<!-- 指定hadoop运行时产生文件的存储目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>file:///data/hadoop/data/tmp</value>
</property>
</configuration>

1.4.2 配置hadoop关联jdk

vim hadoop-env.sh

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. # Set Hadoop-specific environment variables here. # The only required environment variable is JAVA_HOME. All others are
# optional. When running a distributed configuration it is best to
# set JAVA_HOME in this file, so that it is correctly defined on
# remote nodes. # The java implementation to use.
#配置jdk的环境
export JAVA_HOME=/usr/local/jdk1.8.0_111 # The jsvc implementation to use. Jsvc is required to run secure datanodes
# that bind to privileged ports to provide authentication of data transfer
# protocol. Jsvc is not required if SASL is configured for authentication of
# data transfer protocol using non-privileged ports.
#export JSVC_HOME=${JSVC_HOME} export HADOOP_CONF_DIR=${HADOOP_CONF_DIR:-"/etc/hadoop"} # Extra Java CLASSPATH elements. Automatically insert capacity-scheduler.
for f in $HADOOP_HOME/contrib/capacity-scheduler/*.jar; do
if [ "$HADOOP_CLASSPATH" ]; then
export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$f
else
export HADOOP_CLASSPATH=$f
fi
done # The maximum amount of heap to use, in MB. Default is 1000.
#export HADOOP_HEAPSIZE=
#export HADOOP_NAMENODE_INIT_HEAPSIZE="" # Extra Java runtime options. Empty by default.
export HADOOP_OPTS="$HADOOP_OPTS -Djava.net.preferIPv4Stack=true" # Command specific options appended to HADOOP_OPTS when specified
export HADOOP_NAMENODE_OPTS="-Dhadoop.security.logger=${HADOOP_SECURITY_LOGGER:-INFO,RFAS} -Dhdfs.audit.logger=${HDFS_AUDIT_LOGGER:-INFO,NullAppender} $HADOOP_NAMENODE_OPTS"
export HADOOP_DATANODE_OPTS="-Dhadoop.security.logger=ERROR,RFAS $HADOOP_DATANODE_OPTS" export HADOOP_SECONDARYNAMENODE_OPTS="-Dhadoop.security.logger=${HADOOP_SECURITY_LOGGER:-INFO,RFAS} -Dhdfs.audit.logger=${HDFS_AUDIT_LOGGER:-INFO,NullAppender} $HADOOP_SECONDARYNAMENODE_OPTS" export HADOOP_NFS3_OPTS="$HADOOP_NFS3_OPTS"
export HADOOP_PORTMAP_OPTS="-Xmx512m $HADOOP_PORTMAP_OPTS" # The following applies to multiple commands (fs, dfs, fsck, distcp etc)
export HADOOP_CLIENT_OPTS="-Xmx512m $HADOOP_CLIENT_OPTS"
#HADOOP_JAVA_PLATFORM_OPTS="-XX:-UsePerfData $HADOOP_JAVA_PLATFORM_OPTS" # On secure datanodes, user to run the datanode as after dropping privileges.
# This **MUST** be uncommented to enable secure HDFS if using privileged ports
# to provide authentication of data transfer protocol. This **MUST NOT** be
# defined if SASL is configured for authentication of data transfer protocol
# using non-privileged ports.
export HADOOP_SECURE_DN_USER=${HADOOP_SECURE_DN_USER} # Where log files are stored. $HADOOP_HOME/logs by default.
#export HADOOP_LOG_DIR=${HADOOP_LOG_DIR}/$USER # Where log files are stored in the secure data environment.
export HADOOP_SECURE_DN_LOG_DIR=${HADOOP_LOG_DIR}/${HADOOP_HDFS_USER} ###
# HDFS Mover specific parameters
###
# Specify the JVM options to be used when starting the HDFS Mover.
# These options will be appended to the options specified as HADOOP_OPTS
# and therefore may override any similar flags set in HADOOP_OPTS
#
# export HADOOP_MOVER_OPTS="" ###
# Advanced Users Only!
### # The directory where pid files are stored. /tmp by default.
# NOTE: this should be set to a directory that can only be written to by
# the user that will run the hadoop daemons. Otherwise there is the
# potential for a symlink attack.
export HADOOP_PID_DIR=${HADOOP_PID_DIR}
export HADOOP_SECURE_DN_PID_DIR=${HADOOP_PID_DIR} # A string representing this instance of hadoop. $USER by default.
export HADOOP_IDENT_STRING=$USER

1.4.3 配置hdfs

vim hdfs-site.xml

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration>
<!--指定hdfs的副本数-->
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
<!--设置hdfs的权限-->
<property>
<name>dfs.permissions</name>
<value>false</value>
</property>
<!-- secondary name node web 监听端口 -->
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>172.16.200.81:50090</value>
</property>
<!-- name node web 监听端口 --> <property>
<name>dfs.namenode.http-address</name>
<value>172.16.200.81:50070</value>
</property>
<!-- 真正的datanode数据保存路径 -->
<property>
<name>dfs.datanode.data.dir</name>
<value>file:///data/hadoop/data/dfs/dn</value>
</property>
<!-- NN所使用的元数据保存-->
<property>
<name>dfs.namenode.name.dir</name>
<value>file:///data/hadoop/data/dfs/nn/name</value>
</property>
<!--存放 edit 文件-->
<property>
<name>dfs.namenode.edits.dir</name>
<value>file:///data/hadoop/data/dfs/nn/edits</value>
</property>
<!-- secondary namenode 节点存储 checkpoint 文件目录-->
<property>
<name>dfs.namenode.checkpoint.dir</name>
<value>file:///data/hadoop/data/dfs/snn/name</value>
</property>
<!-- secondary namenode 节点存储 edits 文件目录-->
<property>
<name>dfs.namenode.checkpoint.edits.dir</name>
<value>file:///data/hadoop/data/dfs/snn/edits</value>
</property> </configuration>

1.4.4 配置mapred

vim mapred-site.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration>
<!-- 指定mr运行在yarn上 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<!--历史服务的web端口地址 -->
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>172.16.200.81:19888</value>
</property>
<!--历史服务的端口地址-->
<property>
<name>mapreduce.jobhistory.address</name>
<value>172.16.200.81:10020</value>
</property>
<!--Uber运行模式-->
<property>
<name>mapreduce.job.ubertask.enable</name>
<value>false</value>
</property>
<!--MapReduce作业产生的日志存放位置。-->
<property>
<name>mapreduce.jobhistory.intermediate-done-dir</name>
<value>${yarn.app.mapreduce.am.staging-dir}/history/done_intermediate</value>
</property>
<!--MR JobHistory Server管理的日志的存放位置-->
<property>
<name>mapreduce.jobhistory.done-dir</name>
<value>${yarn.app.mapreduce.am.staging-dir}/history/done</value>
</property>
<!--是job运行时的临时文件夹-->
<property>
<name>yarn.app.mapreduce.am.staging-dir</name>
<value>/data/hadoop/hadoop-yarn/staging</value>
</property>
</configuration>

1.4.5 配置slaves

vim slaves
172.16.200.81
172.16.200.82
172.16.200.83
172.16.200.84

1.4.6 配置yarn

vim yarn-site.xml
<?xml version="1.0"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
-->
<configuration>
<!-- 指定nodeManager组件在哪个机子上跑 -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<!-- 指定resourcemanager组件在哪个机子上跑 -->
<property>
<name>yarn.resourcemanager.hostname</name>
<value>172.16.200.81</value>
</property>
<!--resourcemanager web地址-->
<property>
<name>yarn.resourcemanager.webapp.address</name>
<value>172.16.200.81:8088</value>
</property>
<!--启用日志聚集功能-->
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<!--在HDFS上聚集的日志最多保存多长时间-->
<property>
<name>yarn.log-aggregation.retain-seconds</name>
<value>86400</value>
</property> </configuration>

2. 搭建Spark(master、slave相同操作)

2.1 安装spark

cd /usr/loca/src/
tar zxvf spark-2.0.2-bin-hadoop2.7.tgz
mv spark-2.0.2-bin-hadoop2.7 /usr/local/spark-2.0.2

2.2 配置spark环境变量

vim /etc/profile

添加如下信息

######### spark ############
export SPARK_HOME=/usr/local/spark-2.0.2
export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin

2.3 刷新配置文件:

source /etc/profile

2.4 修改spark配置文件

cd /usr/local/spark-2.0.2/conf
mv spark-env.sh.template spark-env.sh
[root@spark-master conf]# ll
总用量 36
-rw-r--r--. 1 500 500 987 11月 8 09:58 docker.properties.template
-rw-r--r--. 1 500 500 1105 11月 8 09:58 fairscheduler.xml.template
-rw-r--r--. 1 500 500 2025 11月 8 09:58 log4j.properties.template
-rw-r--r--. 1 500 500 7239 11月 8 09:58 metrics.properties.template
-rw-r--r--. 1 500 500 912 12月 21 16:55 slaves
-rw-r--r--. 1 500 500 1292 11月 8 09:58 spark-defaults.conf.template
-rwxr-xr-x. 1 root root 3969 12月 21 15:50 spark-env.sh
-rwxr-xr-x. 1 500 500 3861 11月 8 09:58 spark-env.sh.template

2.4.1 spark关联jdk

vim spark-env.sh
#!/usr/bin/env bash

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# # This file is sourced when running various Spark programs.
# Copy it as spark-env.sh and edit that to configure Spark for your site. # Options read when launching programs locally with
# ./bin/run-example or ./bin/spark-submit
# - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files
# - SPARK_LOCAL_IP, to set the IP address Spark binds to on this node
# - SPARK_PUBLIC_DNS, to set the public dns name of the driver program
# - SPARK_CLASSPATH, default classpath entries to append # Options read by executors and drivers running inside the cluster
# - SPARK_LOCAL_IP, to set the IP address Spark binds to on this node
# - SPARK_PUBLIC_DNS, to set the public DNS name of the driver program
# - SPARK_CLASSPATH, default classpath entries to append
# - SPARK_LOCAL_DIRS, storage directories to use on this node for shuffle and RDD data
# - MESOS_NATIVE_JAVA_LIBRARY, to point to your libmesos.so if you use Mesos # Options read in YARN client mode
# - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files
# - SPARK_EXECUTOR_INSTANCES, Number of executors to start (Default: 2)
# - SPARK_EXECUTOR_CORES, Number of cores for the executors (Default: 1).
# - SPARK_EXECUTOR_MEMORY, Memory per Executor (e.g. 1000M, 2G) (Default: 1G)
# - SPARK_DRIVER_MEMORY, Memory for Driver (e.g. 1000M, 2G) (Default: 1G) # Options for the daemons used in the standalone deploy mode
# - SPARK_MASTER_HOST, to bind the master to a different IP address or hostname
# - SPARK_MASTER_PORT / SPARK_MASTER_WEBUI_PORT, to use non-default ports for the master
# - SPARK_MASTER_OPTS, to set config properties only for the master (e.g. "-Dx=y")
# - SPARK_WORKER_CORES, to set the number of cores to use on this machine
# - SPARK_WORKER_MEMORY, to set how much total memory workers have to give executors (e.g. 1000m, 2g)
# - SPARK_WORKER_PORT / SPARK_WORKER_WEBUI_PORT, to use non-default ports for the worker
# - SPARK_WORKER_INSTANCES, to set the number of worker processes per node
# - SPARK_WORKER_DIR, to set the working directory of worker processes
# - SPARK_WORKER_OPTS, to set config properties only for the worker (e.g. "-Dx=y")
# - SPARK_DAEMON_MEMORY, to allocate to the master, worker and history server themselves (default: 1g).
# - SPARK_HISTORY_OPTS, to set config properties only for the history server (e.g. "-Dx=y")
# - SPARK_SHUFFLE_OPTS, to set config properties only for the external shuffle service (e.g. "-Dx=y")
# - SPARK_DAEMON_JAVA_OPTS, to set config properties for all daemons (e.g. "-Dx=y")
# - SPARK_PUBLIC_DNS, to set the public dns name of the master or workers # Generic options for the daemons used in the standalone deploy mode
# - SPARK_CONF_DIR Alternate conf dir. (Default: ${SPARK_HOME}/conf)
# - SPARK_LOG_DIR Where log files are stored. (Default: ${SPARK_HOME}/logs)
# - SPARK_PID_DIR Where the pid file is stored. (Default: /tmp)
# - SPARK_IDENT_STRING A string representing this instance of spark. (Default: $USER)
# - SPARK_NICENESS The scheduling priority for daemons. (Default: 0)
#java的环境变量
export JAVA_HOME=/usr/local/jdk1.8.0_111
#spark主节点的ip
export SPARK_MASTER_IP=172.16.200.81
#spark主节点的端口号
export SPARK_MASTER_PORT=7077

2.4.2 配置slaves

vim slaves
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# # A Spark Worker will be started on each of the machines listed below.
172.16.200.81
172.16.200.82
172.16.200.83
172.16.200.84

3. 安装scala

cd /usr/loca/src/
tar zxvf scala-2.12.1.tgz
mv scala-2.12.1 /usr/local

3.1 配置scala环境变量(只master安装)

vim /etc/profile

添加如下信息

######### scala ##########
export SCALA_HOME=/usr/local/scala-2.12.1
export PATH=$PATH:$SCALA_HOME/bin

3.2 刷新配置文件:

source /etc/profile

4. 启动程序

4.1 启动hadoop

4.1.1 格式化namenode

hadoop namenode -format

4.1.2 master启动hadoop

cd /usr/local/hadoop-2.7.3/sbin
./start-all.sh

提示

start-all.sh                    //启动master和slaves
stop-all.sh //停止master和slaves

查看进程 (master)

[root@spark-master sbin]# jps
8961 NodeManager
8327 DataNode
8503 SecondaryNameNode
8187 NameNode
8670 ResourceManager
9102 Jps
[root@spark-master sbin]#

查看进程 (slave)

[root@spark-slave01 ~]# jps
4289 NodeManager
4439 Jps
4175 DataNode
[root@spark-slave01 ~]#

slave01、slve02、slave03显示相同

4.2 启动spark

4.1.2 master启动hadoop

cd /usr/local/spark-2.0.2/sbin
./start-all.sh

提示

start-all.sh                    //启动master和slaves
stop-all.sh //停止master和slaves

大数据平台搭建(hadoop+spark)的更多相关文章

  1. 小白入门AI教程:教你快速搭建大数据平台『Hadoop+Spark』

    Apache Spark 简介 Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎.Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源 ...

  2. 大数据平台搭建-hadoop/hbase集群的搭建

    版本要求 java 版本:1.8.*(1.8.0_60) 下载地址:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downl ...

  3. product of大数据平台搭建------CM 和CDH安装

    一.安装说明 CM是由cloudera公司提供的大数据组件自动部署和监控管理工具,相应的和CDH是cloudera公司在开源的hadoop社区版的基础上做了商业化的封装的大数据平台. 采用离线安装模式 ...

  4. CDH 大数据平台搭建

    一.概述 Cloudera版本(Cloudera’s Distribution Including Apache Hadoop,简称“CDH”),基于Web的用户界面,支持大多数Hadoop组件,包括 ...

  5. HDP 大数据平台搭建

    一.概述 Apache Ambari是一个基于Web的支持Apache Hadoop集群的供应.管理和监控的开源工具,Ambari已支持大多数Hadoop组件,包括HDFS.MapReduce.Hiv ...

  6. 大数据平台搭建:Hadoop

    To construct big data distributed platform based on Hadoop is a common method. Hadoop comes fron Goo ...

  7. 大数据平台搭建 - cdh5.11.1 - hadoop集群安装

    一.前言 由于线下测试的需要,需要在公司线下(测试)环境搭建大数据集群. 那么CDH是什么? hadoop是一个开源项目,所以很多公司再这个基础上进行商业化,不收费的hadoop版本主要有三个,分别是 ...

  8. 大数据平台搭建 - cdh5.11.1 - spark源码编译及集群搭建

    一.spark简介 Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎,Spark 是一种与 hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同 ...

  9. Hadoop大数据平台搭建之前期配置(2)

    环境:CentOS 7.4 (1708  DVD) 工具:VMware.MobaXterm 一. 克隆大数据集群 1. 选中已经进行了基本配置的虚拟机,进行克隆. 2. 此处改为"创建完整克 ...

随机推荐

  1. Android 线程与消息 机制 15问15答

    1.handler,looper,messagequeue三者之间的关系以及各自的角色? 答:MessageQueue就是存储消息的载体,Looper就是无限循环查找这个载体里是否还有消息.Handl ...

  2. JBPM4之decision节点:1、好学生 | 坏学生

    JBPM入门系列文章: JBPM4入门——1.jbpm简要介绍 JBPM4入门——2.在eclipse中安装绘制jbpm流程图的插件 JBPM4入门——3.JBPM4开发环境的搭建 JBPM4入门—— ...

  3. 别人的的MYSQL学习心得(十五) 日志

    我的MYSQL学习心得(十五) 日志 我的MYSQL学习心得(一) 简单语法 我的MYSQL学习心得(二) 数据类型宽度 我的MYSQL学习心得(三) 查看字段长度 我的MYSQL学习心得(四) 数据 ...

  4. js保留小数点后N位的方法介绍

    js保留小数点后N位的方法介绍 利用toFixed函数 代码如下 复制代码 <script language="javascript"> document.write( ...

  5. eclipse 在Navigator视图中查看资源

    随着不断使用Eclipse,Navigator视图中的实体数目会增加.通过在某一项目或文件夹上右击,并在所出现的快捷菜单中选择Go Into命令,你就可以查看该项目或文件夹中的资源了.此时Naviga ...

  6. SQLite数据库和JPA简单介绍

    SQLite数据库和JPA简单介绍 一.SQLite简单使用 SQLite是遵循ACID的关系数据库管理系统,它的处理速度很快,它的设计目标是嵌入式的,只需要几百K的内存就可以了. 1.下载SQLit ...

  7. cocos2d-x CocoStudio中场景触发器(Trigger)的使用和扩展

    场景编辑器中的触发器是一种通过事件触发机制,在特定的事件被触发的时候自动执行自己预先定义的动作或者功能. 编辑器中带有一些默认的事件.条件和动作,当然也可以扩展自定义的事件.条件和动作. 触发器可以创 ...

  8. 【Unity入门】编辑器常用视图介绍

    版权声明:本文为博主原创文章,转载请注明出处. 打开Unity编辑器的主窗口,在窗口的右上角可以看到有个“Layout”按钮.这是用来对Unity编辑器主窗口上面的各个窗口面板进行布局的.通常情况下我 ...

  9. python在linux上的GUI无法弹出界面

    在进行python写GUI程序的时候,使用Tkinter,发现无法执行程序,报错如下: X connection to localhost:10.0 broken(explicit kill or s ...

  10. 软件工程个人项目-Word frequency program by11061167龚少波

    (一)工程设计时间预计 1.代码编写:4小时 熟悉Visual studio 2012的使用 : 程序代码部分主要分为三个步骤: (1)主函数的构建,包括各种函数调用及输入输出部分: (2)对目标文件 ...