「CF527E」 Data Center Drama

传送门

显然一个环肯定满足题目条件。

然后我就开始想:先整一棵 \(\texttt{DFS}\) 树,然后非树边从深度深的节点向深度浅的节点连边,这样可以构成若干个环,再将奇度数点两两配对......

然后这显然不太对...构成的环可能有公共边......

然后事实上如果所有入度出度都为偶数的话总度数也为偶数,那么这个图是有欧拉回路的。

但是有欧拉回路并不一定能够满足条件,还需要总边数为偶数。

所以将奇数点相连过后再视情况加入自环即可。

最后跑一遍欧拉回路,相邻两条边反向即可。

/*---Author:HenryHuang---*/
/*---Never Settle---*/
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+5;
struct edge{
int to,nex;
}e[maxn<<2];
int head[maxn],cnt=1,cur[maxn];
void add(int a,int b){
e[++cnt]=(edge){b,head[a]};
head[a]=cnt;
}
int deg[maxn];
int odd[maxn],tot;
int vis[maxn<<2];
int k;
void dfs(int u){
// cerr<<u<<'\n';
for(int &i=head[u];i;i=e[i].nex){
if(vis[i]) continue;
vis[i]=vis[i^1]=1;
int v=e[i].to;
dfs(v);
if((++k)&1) cout<<u<<' '<<v<<'\n';
else cout<<v<<' '<<u<<'\n';
}
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
int n,m;cin>>n>>m;
for(int i=1;i<=m;++i){
int a,b;cin>>a>>b;
add(a,b),add(b,a);
++deg[a],++deg[b];
}
for(int i=1;i<=n;++i) if(deg[i]&1) odd[++tot]=i;
for(int i=1;i<=tot;i+=2) add(odd[i],odd[i+1]),add(odd[i+1],odd[i]),++m;
if(m&1) add(1,1),add(1,1),++m;
cout<<m<<'\n';
dfs(1);
return 0;
}

「CF527E」 Data Center Drama的更多相关文章

  1. CF527E Data Center Drama

    链接CF527E Data Center Drama 题目大意:给你一个无向图,要求加最少的边,然后给这些无向图的边定向,使得每一个点的出入度都是偶数. \(n<=10^5,n\leq 2*10 ...

  2. Codeforces Round #296 (Div. 1) C. Data Center Drama 欧拉回路

    Codeforces Round #296 (Div. 1)C. Data Center Drama Time Limit: 2 Sec  Memory Limit: 256 MBSubmit: xx ...

  3. CF527E Data Center Drama(构造+欧拉回路)

    题目链接 大意: 给你一个无向图. 要求加最少的边,然后给这些无向图的边定向,使得每一个点的出入度都是偶数. 输出定向后的边数和边集. n<=10^5 m<=2*10^5 很巧妙的构造题- ...

  4. Codeforces 527E Data Center Drama(欧拉回路)

    题意: 给定一个无向图连通图,把这个的无向边变成有向边,并添加最少的有向边使这个图每个结点的出度为偶数. Solution: 题目很长,并且很多条件说的不太直接,确实不太好懂. 首先先看得到的无向图, ...

  5. Data Center Drama 欧拉回路的应用

    这题说的是给了n个点 和m条边, 这m条边是无向的,任务是将这些边变成有向的,并且添加最少的有向边使得这个图中每个点的入度为偶数, 出度为偶数. 我们可以考虑使用欧拉回路来解决这个问题,这样说,假如一 ...

  6. LOJ2722 「NOI2018」情报中心

    「NOI2018」情报中心 题目描述 C 国和D 国近年来战火纷飞. 最近,C 国成功地渗透进入了D 国的一个城市.这个城市可以抽象成一张有$n$ 个节点,节点之间由$n - 1$ 条双向的边连接的无 ...

  7. 「JavaScript」四种跨域方式详解

    超详细并且带 Demo 的 JavaScript 跨域指南来了! 本文基于你了解 JavaScript 的同源策略,并且了解使用跨域跨域的理由. 1. JSONP 首先要介绍的跨域方法必然是 JSON ...

  8. 「2014-3-13」Javascript Engine, Java VM, Python interpreter, PyPy – a glance

    提要: url anchor (ajax) => javascript engine (1~4 articles) => java VM vs. python interpreter =& ...

  9. 「2014-2-26」Unicode vs. UTF-8 etc.

    目测是个老问题了.随便一搜,网上各种总结过.这里不辞啰嗦,尽量简洁的备忘一下. 几个链接,有道云笔记链接,都是知乎上几个问题的摘录:阮一峰的日志,1-5 还是值得参考,但是之后的部分则混淆了 Wind ...

随机推荐

  1. opencv——自适应阈值Canny边缘检测

    前言 Canny边缘检测速度很快,OpenCV中经常会用到Canny边缘检测,以前的Demo中使用Canny边缘检测都是自己手动修改高低阈值参数,最近正好要研究点小东西时,就想能不能做个自适应的阈值, ...

  2. 深入浅出Promise

    Abstract Promise的意思是承诺(在红宝书中翻译为期约),新华字典:(动)对某项事务答应照办. Promise最早出现在Commn JS,随后形成了Promise/A规范. Promise ...

  3. Xilinx低比特率高品质 ABR 视频实时转码(HPE 参考架构)

    Xilinx低比特率高品质 ABR 视频实时转码(HPE 参考架构) 介绍 对实时视频流的需求给视频服务提供商带来了严峻挑战,必须在管理基础设施和互联网带宽运营成本,还要为客户提供高质量体验.鉴于视频 ...

  4. 适用于AMD ROC GPU的Numba概述

    适用于AMD ROC GPU的Numba概述 Numba通过按照HSA执行模型将Python代码的受限子集直接编译到HSA内核和设备功能中,从而支持AMD ROC GPU编程.用Numba编写的内核似 ...

  5. ES6中的数组方法扩展

    上一篇文章小编简单介绍了在ES6中,一些常用的方法和一些简单的应用,在这篇文章中,小编将针对ES6中数组常用方法进行扩展,相信经过这篇文章之后,每一位小伙伴下班时间会有所提前,就算从原来的996变成9 ...

  6. spring——自动装配【非常详细】

    什么是自动装配? 自动装配就是让应用程序上下文为你找出依赖项的过程.说的通俗一点,就是Spring会在上下文中自动查找,并自动给bean装配与其关联的属性! spring中实现自动装配的方式有两种,一 ...

  7. 【NX二次开发】打开信息窗口UF_UI_open_listing_window

    头文件:uf_ui_ugopen.h函数名:UF_UI_open_listing_window 函数说明:打开信息窗口 测试代码: #include <uf.h> #include < ...

  8. 「10.11」chess(DP,组合数学)·array(单调栈)·ants(莫队,并茶几)

    菜鸡wwb因为想不出口胡题所以来写题解了 A. chess 昨天晚上考试,有点困 开考先花五分钟扫了一边题,好开始肝$T1$ 看了一眼$m$的范围很大,第一反应矩阵快速幂?? $n$很小,那么可以打$ ...

  9. 【题解】Luogu P2875 [USACO07FEB]牛的词汇The Cow Lexicon

    题目描述 Few know that the cows have their own dictionary with W (1 ≤ W ≤ 600) words, each containing no ...

  10. 解决java socket在传输汉字时出现截断导致乱码的问题

    解决java socket在传输汉字时出现截断导致乱码的问题 当使用socket进行TCP数据传输时,传输的字符串会编码成字节数组,当采用utf8编码时,数字与字母长度为1个字节,而汉字一般为3个字节 ...