[hdu6588]Function
令$m=\lfloor \sqrt[3]{n} \rfloor-1$
$\sum_{i=1}^{n}gcd(floor(\sqrt[3]{i}),i)$
=$\sum_{i=1}^{m}\sum\limits_{j=i^{3}}^{(i+1)^{3}-1}gcd(i,j)+\sum\limits_{i=(m+1)^{3}}^{n}gcd(m+1,i)$
考虑该式的前缀和,即
$\sum_{i=1}^{n}gcd(m,i)$(上式的m和n和之前的无关系)
=$\sum_{d|m}d\sum_{i=1}^{n/d}\varepsilon(gcd(i,m/d))$
=$\sum_{t|m}\mu(t)\sum_{dt|m}n/dt\cdot d$
=$\sum_{T|m}n/T \sum_{d|T}d\cdot \mu(T/d)$
=$\sum_{T|m}n/T\cdot \varphi(T)$
对$\varphi$线性筛,原式后半部分可以用o(m),考虑前半部分
=$\sum_{i=1}^{m}\sum_{T|i}\varphi(T)\cdot (((i+1)^{3}-1)/T-(i^3-1)/T)$
=$\sum_{T=1}^{m}\varphi(T)\sum_{i=1}^{m/T}((iT+1)^{3}-1)/T-(iT^3-1)/T$
=$\sum_{T=1}^{m}\varphi(T)\sum_{i=1}^{m/T}3Ti^{2}+3i+1$
这个就也可以o(m)计算了(后面的sigma可以预处理,也可以套公式),总时间复杂度即o(m)

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 10000005
4 #define mod 998244353
5 #define ll __int128
6 int T,m,ans,s1[N],s2[N],vis[N],phi[N],p[N];
7 char s[101];
8 int main(){
9 s1[1]=3;
10 s2[1]=4;
11 phi[1]=1;
12 for(int i=2;i<N-4;i++){
13 s1[i]=(s1[i-1]+3LL*i*i)%mod;
14 s2[i]=(s2[i-1]+3LL*i+1)%mod;
15 if (!vis[i]){
16 p[++p[0]]=i;
17 phi[i]=i-1;
18 }
19 for(int j=1;(j<=p[0])&&(i*p[j]<N-4);j++){
20 vis[i*p[j]]=1;
21 if (i%p[j])phi[i*p[j]]=phi[i]*(p[j]-1);
22 else{
23 phi[i*p[j]]=phi[i]*p[j];
24 break;
25 }
26 }
27 }
28 scanf("%d",&T);
29 while (T--){
30 scanf("%s",s);
31 ll n=0;
32 for(int i=0;s[i];i++)n=n*10+(s[i]-'0');
33 for(m=1;(ll)m*m*m<=n;m++);
34 m-=2;
35 int ans=0;
36 for(int i=1;i<=m+1;i++)
37 if ((m+1)%i==0)ans=(ans+(n/i-((ll)(m+1)*(m+1)*(m+1)-1)/i)%mod*phi[i])%mod;
38 for(int i=1;i<=m;i++)ans=(ans+1LL*phi[i]*(1LL*i*s1[m/i]+s2[m/i]+mod))%mod;
39 printf("%d\n",ans);
40 }
41 }
[hdu6588]Function的更多相关文章
- 通过百度echarts实现数据图表展示功能
现在我们在工作中,在开发中都会或多或少的用到图表统计数据显示给用户.通过图表可以很直观的,直接的将数据呈现出来.这里我就介绍说一下利用百度开源的echarts图表技术实现的具体功能. 1.对于不太理解 ...
- jsp中出现onclick函数提示Cannot return from outside a function or method
在使用Myeclipse10部署完项目后,原先不出错的项目,会有红色的叉叉,JSP页面会提示onclick函数错误 Cannot return from outside a function or m ...
- JavaScript function函数种类
本篇主要介绍普通函数.匿名函数.闭包函数 目录 1. 普通函数:介绍普通函数的特性:同名覆盖.arguments对象.默认返回值等. 2. 匿名函数:介绍匿名函数的特性:变量匿名函数.无名称匿名函数. ...
- 在ubuntu16.10 PHP测试连接MySQL中出现Call to undefined function: mysql_connect()
1.问题: 测试php7.0 链接mysql数据库的时候发生错误: Fatal error: Uncaught Error: Call to undefined function mysqli_con ...
- jquery中的$(document).ready(function() {});
当文档载入时执行function函数里的代码, 这部分代码主要声明,页面加载后 "监听事件" 的方法.例如: $(document).ready( $("a") ...
- Function.prototype.toString 的使用技巧
Function.prototype.toString这个原型方法可以帮助你获得函数的源代码, 比如: function hello ( msg ){ console.log("hello& ...
- 转:ORA-15186: ASMLIB error function = [asm_open], error = [1], 2009-05-24 13:57:38
转:ORA-15186: ASMLIB error function = [asm_open], error = [1], 2009-05-24 13:57:38http://space.itpub. ...
- [Xamarin] 透過Native Code呼叫 JavaScript function (转帖)
今天我們來聊聊關於如何使用WebView 中的Javascript 來呼叫 Native Code 的部分 首先,你得先來看看這篇[Xamarin] 使用Webview 來做APP因為這篇文章至少講解 ...
- Oracle数据库自动备份SQL文本:Procedure存储过程,View视图,Function函数,Trigger触发器,Sequence序列号等
功能:备份存储过程,视图,函数触发器,Sequence序列号等准备工作:--1.创建文件夹 :'E:/OracleBackUp/ProcBack';--文本存放的路径--2.执行:create or ...
随机推荐
- Unity——AssetBundle打包工具
Unity批量打AB包 为了资源热更新,Unity支持将所有资源打包成AssetBundle资源,存放在SteamingAssets文件夹中: 在项目发布之前,需要将所有资源打包成.ab文件,动态加载 ...
- Python中pymongo find 遍历数据导致timeout
背景 在读取大约200W左右的数据的时候采用游标形式进行数据遍历时,超过10分钟就报错 timeout 原因 pymongo游标会在10分钟之后被关闭 解决方案 db.find({}, no_curs ...
- 学大数据一定要会Java开发吗?
Java是目前使用广泛的编程语言之一,具有的众多特性,特别适合作为大数据应用的开发语言.Java语言功能强大和简单易用,不仅吸收了C++语言的各种优点还摒弃了C++里难以理解的多继承.指针等概念. J ...
- Java:NIO 学习笔记-3
Java:NIO 学习笔记-3 根据 黑马程序员 的课程 JAVA通信架构I/O模式,做了相应的笔记 3. JAVA NIO 深入剖析 在讲解利用 NIO 实现通信架构之前,我们需要先来了解一下 NI ...
- Java:NIO 学习笔记-1
Java:NIO 学习笔记-1 说明:本笔记是根据bilibili上 尚硅谷 的课程 NIO视频 而做的笔记 主要内容 Java NIO 简介 Java NIO 与 IO 的主要区别 缓冲区(Buff ...
- Unity 3D手游对不同分辨率屏幕的UI自适应
目前安卓手机的屏幕大小各异,没有统一的标准,因此用Unity 3D制作的手游需要做好对不同分辨率屏幕的UI自适应,否则就会出现UI大小不一和位置错位等问题. 我们的项目在开发时的参照分辨率(Refer ...
- Noip模拟54 2021.9.16
T1 选择 现在发现好多题目都是隐含的状压,不明面给到数据范围里,之凭借一句话 比如这道题就是按照题目里边给的儿子数量不超过$10$做状压,非常邪门 由于数据范围比较小,怎么暴力就怎么来 从叶子节点向 ...
- 2021.9.21考试总结[NOIP模拟58]
T1 lesson5! 开始以为是个无向图,直接不懂,跳去T2了. 之后有看了一眼发现可暴力,于是有了\(80pts\). 发现这个图是有拓扑序的,于是可以用拓扑排序找最长路径.先找原图内在最长路径上 ...
- stm32学习心得体会
stm32作为现在嵌入式物联网单片机行业中经常要用多的技术,相信大家都有所接触,今天这篇就给大家详细的分析下有关于stm32的出口,还不是很清楚的朋友要注意看看了哦,在最后还会为大家分享有些关于stm ...
- 零基础学习STM32之入门学习路线
可以说就目前的市场需求来看,stm32在单片机领域已经拥有了绝对的地位,51什么的已经过时了也只能拿来打基础了,最后依然会转到stm32来,也正是因为这样stm32的学习者越来越多,其中不难发现绝大部 ...