令$m=\lfloor \sqrt[3]{n} \rfloor-1$ 
   $\sum_{i=1}^{n}gcd(floor(\sqrt[3]{i}),i)$
=$\sum_{i=1}^{m}\sum\limits_{j=i^{3}}^{(i+1)^{3}-1}gcd(i,j)+\sum\limits_{i=(m+1)^{3}}^{n}gcd(m+1,i)$
考虑该式的前缀和,即
   $\sum_{i=1}^{n}gcd(m,i)$(上式的m和n和之前的无关系)
=$\sum_{d|m}d\sum_{i=1}^{n/d}\varepsilon(gcd(i,m/d))$
=$\sum_{t|m}\mu(t)\sum_{dt|m}n/dt\cdot d$
=$\sum_{T|m}n/T \sum_{d|T}d\cdot \mu(T/d)$
=$\sum_{T|m}n/T\cdot \varphi(T)$
对$\varphi$线性筛,原式后半部分可以用o(m),考虑前半部分
=$\sum_{i=1}^{m}\sum_{T|i}\varphi(T)\cdot (((i+1)^{3}-1)/T-(i^3-1)/T)$
=$\sum_{T=1}^{m}\varphi(T)\sum_{i=1}^{m/T}((iT+1)^{3}-1)/T-(iT^3-1)/T$
=$\sum_{T=1}^{m}\varphi(T)\sum_{i=1}^{m/T}3Ti^{2}+3i+1$
这个就也可以o(m)计算了(后面的sigma可以预处理,也可以套公式),总时间复杂度即o(m)

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 10000005
4 #define mod 998244353
5 #define ll __int128
6 int T,m,ans,s1[N],s2[N],vis[N],phi[N],p[N];
7 char s[101];
8 int main(){
9 s1[1]=3;
10 s2[1]=4;
11 phi[1]=1;
12 for(int i=2;i<N-4;i++){
13 s1[i]=(s1[i-1]+3LL*i*i)%mod;
14 s2[i]=(s2[i-1]+3LL*i+1)%mod;
15 if (!vis[i]){
16 p[++p[0]]=i;
17 phi[i]=i-1;
18 }
19 for(int j=1;(j<=p[0])&&(i*p[j]<N-4);j++){
20 vis[i*p[j]]=1;
21 if (i%p[j])phi[i*p[j]]=phi[i]*(p[j]-1);
22 else{
23 phi[i*p[j]]=phi[i]*p[j];
24 break;
25 }
26 }
27 }
28 scanf("%d",&T);
29 while (T--){
30 scanf("%s",s);
31 ll n=0;
32 for(int i=0;s[i];i++)n=n*10+(s[i]-'0');
33 for(m=1;(ll)m*m*m<=n;m++);
34 m-=2;
35 int ans=0;
36 for(int i=1;i<=m+1;i++)
37 if ((m+1)%i==0)ans=(ans+(n/i-((ll)(m+1)*(m+1)*(m+1)-1)/i)%mod*phi[i])%mod;
38 for(int i=1;i<=m;i++)ans=(ans+1LL*phi[i]*(1LL*i*s1[m/i]+s2[m/i]+mod))%mod;
39 printf("%d\n",ans);
40 }
41 }

[hdu6588]Function的更多相关文章

  1. 通过百度echarts实现数据图表展示功能

    现在我们在工作中,在开发中都会或多或少的用到图表统计数据显示给用户.通过图表可以很直观的,直接的将数据呈现出来.这里我就介绍说一下利用百度开源的echarts图表技术实现的具体功能. 1.对于不太理解 ...

  2. jsp中出现onclick函数提示Cannot return from outside a function or method

    在使用Myeclipse10部署完项目后,原先不出错的项目,会有红色的叉叉,JSP页面会提示onclick函数错误 Cannot return from outside a function or m ...

  3. JavaScript function函数种类

    本篇主要介绍普通函数.匿名函数.闭包函数 目录 1. 普通函数:介绍普通函数的特性:同名覆盖.arguments对象.默认返回值等. 2. 匿名函数:介绍匿名函数的特性:变量匿名函数.无名称匿名函数. ...

  4. 在ubuntu16.10 PHP测试连接MySQL中出现Call to undefined function: mysql_connect()

    1.问题: 测试php7.0 链接mysql数据库的时候发生错误: Fatal error: Uncaught Error: Call to undefined function mysqli_con ...

  5. jquery中的$(document).ready(function() {});

    当文档载入时执行function函数里的代码, 这部分代码主要声明,页面加载后 "监听事件" 的方法.例如: $(document).ready( $("a") ...

  6. Function.prototype.toString 的使用技巧

    Function.prototype.toString这个原型方法可以帮助你获得函数的源代码, 比如: function hello ( msg ){ console.log("hello& ...

  7. 转:ORA-15186: ASMLIB error function = [asm_open], error = [1], 2009-05-24 13:57:38

    转:ORA-15186: ASMLIB error function = [asm_open], error = [1], 2009-05-24 13:57:38http://space.itpub. ...

  8. [Xamarin] 透過Native Code呼叫 JavaScript function (转帖)

    今天我們來聊聊關於如何使用WebView 中的Javascript 來呼叫 Native Code 的部分 首先,你得先來看看這篇[Xamarin] 使用Webview 來做APP因為這篇文章至少講解 ...

  9. Oracle数据库自动备份SQL文本:Procedure存储过程,View视图,Function函数,Trigger触发器,Sequence序列号等

    功能:备份存储过程,视图,函数触发器,Sequence序列号等准备工作:--1.创建文件夹 :'E:/OracleBackUp/ProcBack';--文本存放的路径--2.执行:create or ...

随机推荐

  1. JVM学习笔记——方法区

    方法区 Method Area 方法区在逻辑上属于堆的一部分,但可以看做是一块独立于 Java 堆的内存空间.所有的字段和方法字节码,以及一些特殊的方法,如构造函数,接口代码在此定义.所有定义方法的信 ...

  2. t-SNE 从入门到放弃

    t-SNE 算法 1 前言 t-SNE 即 t-distributed stochastic neighbor embedding 是一种用于降维的机器学习算法,在 2008 年由 Laurens v ...

  3. Spring事件,ApplicationEvent在业务中的应用

    前言 关于事件驱动模型,百度百科在有明确的解释.在JDK的Util包里抽象了事件驱动,有兴趣的朋友可以自行去看下相关类的定义.Spring事件模型ApplicationEvent是基于JDK里的事件模 ...

  4. mysql group by语句流程是怎么样的

    group by流程是怎么样的 注意点: select id%10 as m, count(*) as c from t1 group by m; group by是用于对数据进行分组,我们排序用到了 ...

  5. 实用 | 利用 aardio 配合 Python 快速开发桌面应用

    1. 前言 大家好,我是安果! 我们都知道 Python 可以用来开发桌面应用,一旦功能开发完成,最后打包的可执行文件体积大,并且使用 Python 开发桌面应用周期相对较长 假如想快速开发一款 PC ...

  6. Oracle12C安装教程

    准备工作 网盘链接: https://pan.baidu.com/s/1gffHbOjImk1SfezdWO2Bpw 提取码: imft Oracle12C的安装 1.分别解压"winx64 ...

  7. Google Style Guides

    Google Style Guides Google Style Guides Google 开源项目风格指南 (zh-google-styleguide.readthedocs.io)

  8. 升级更新 Windows10

    升级更新 Windows10:获取 Windows 更新助手 升级 Windows10,它是先下载 Windows10 系统镜像,然后才升级.在下载完 Windows10 后,升级前,有一步骤会询问: ...

  9. clock时钟

    ①时钟的偏移(skew):时钟分支信号在到达寄存器的时钟端口过程中,都存在有线网等延时,由于延时,到达寄存器时钟端口的时钟信号存在有相位差,也就是不能保证每一个沿都对齐,这种差异称为时钟偏移(cloc ...

  10. Bootstrap移动端导航(简易)

    效果 在线查看 代码少,都在HTML里 <!DOCTYPE html> <html lang="en"> <head> <meta cha ...