对于这一个平面用$a_{x,y}$来表示,即$(x,y)$为黑色则$a_{x,y}=1$,否则$a_{x,y}=0$,之后定义$a$能生成$b$当且仅当$a$能够通过若干次操作后得到$b$

令$p_{y}=\bigoplus_{x}a_{x,y}$、$q_{x,i}=\bigoplus_{y\equiv i(mod\ 3)}a_{x,i}$(其中$0\le i<3$),考虑两个序列能相互生成当且仅当$pa_{i}=pb_{i}$且$\forall x,(qa_{x,0}\oplus qb_{x,0})=...=(qa_{x,2}\oplus qb_{x,2})$,证明如下:

首先考虑一次操作$(x,y)$会带来的影响:对于$p_{i}$没有影响,对于$q_{i}$是将$q_{x}$和$q_{x+1}$所有位置异或1,那么所能产生的仅有原序列和异或1后的序列,即证明了后面条件的必要性

接下来证明对于两个满足上述条件的$a$和$b$,证明$a$能生成$b$(操作可逆,因此生成也具有可逆性)

找到$a_{x,y}=1$,满足$x\ge 2$且$y\ge 3$,若仍有多个取$x$最大的,若仍有多个取$y$最大的(若不存在则停止),之后执行$(x-2,y-1)$这个操作

对$a$和$b$都重复此过程,若最终得到的$a=b$,则根据操作可逆性,初始的$a$能生成$b$,因此以下来证明$a=b$,先将整个平面分为四个部分,分别证明相等:

1.$x\ge 2$且$y\ge 3$,此时$a_{x,y}=b_{x,y}=0$(否则还可以继续操作)

2.$x=1$且$y\ge 3$,此时$a_{x,y}=b_{x,y}=p_{y}$(两者$p_{y}$相同)

3.$x\ge 2$且$y\le 2$,此时$qa_{x,0}=qb_{x,0}=0$,因此$a_{x,1}=qa_{x,1}=qb_{x,1}=b_{x,1}$,同理$a_{x,2}=b_{x,2}$

4.$x=1$且$y\le 2$,根据3可以得到$a_{x,1}=b_{x,1}$,可推出$\bigoplus_{x>1}a_{x,1}=b_{x,1}$,又因为$pa_{1}=pb_{1}$,因此$a_{1,1}=b_{1,1}$,类似的$a_{1,2}=b_{1,2}$

由此,即证明了该结论,现在我们要找到满足此条件下最小的1个数最小的$a$

考虑先暴力$o(2^{\infty})$去枚举每一个$q_{x}$是否要全部异或1(即让$q$需要完全相等),接下来构造最少的$a$

首先,若$0\le i<3$满足$\bigoplus_{y\equiv i(mod\ 3)}p_{y}\ne\bigoplus_{x}q_{x,i}$,意味着产生了矛盾,无解

(其实这里产生这个条件的原因是每一次翻转了两列,因此翻转的列数必然是偶数列,但如果翻转奇数列会引发$p_{i}$变化,不存在合法的$a$,而证明就是对于给定已经合法的$a$和$b$去考虑,因此没有问题)

其次,考虑至少需要$\sum_{i=0}^{2}\max(\sum_{y\equiv i(mod\ 3)}p_{y},\sum_{x}q_{x,i})$个,接下来构造恰好达到下限的解:

对于$p_{y}=1$且$q_{x,i}=1$(其中$y\equiv i(mod\ 3)$),仅在$(x,y)$放置一个就可以满足两个,对于其他的在$(x,\infty)$或$(\infty,y)$放即达到了该下限,且由于异或相等,即必然剩余偶数个,最终$p_{\infty}$和$q_{\infty,0/1/2}$都为0

预处理初始前面以及后面的三个值,分别记作$(X,Y,Z)$和$(x,y,z)$,翻转即将$(x,y,z)$其中一个减1并将另外两个加1,之后满足$x\equiv X,y\equiv Y,z\equiv Z(mod\ 2)$且最小化$\max(x,X)+\max(y,Y)+\max(z,Z)$

贪心去操作$x-X$、$y-Y$和$z-Z$中最大的数(如果会使答案增加就不操作),最终若$x\not\equiv X(mod\ 2)$则再操作一次即可

 1 #include<bits/stdc++.h>
2 using namespace std;
3 map<int,int>p1,p2;
4 map<int,int>::iterator it;
5 int n,x,y,s,ans,a[3];
6 int calc(){
7 return max(a[0],0)+max(a[1],0)+max(a[2],0);
8 }
9 int main(){
10 scanf("%d",&n);
11 for(int i=1;i<=n;i++){
12 scanf("%d%d",&x,&y);
13 p1[x]^=(1<<(y%3));
14 p2[y]^=1;
15 }
16 for(it=p1.begin();it!=p1.end();it++){
17 x=(*it).second;
18 if ((x==1)||(x==6))a[0]++;
19 if ((x==2)||(x==5))a[1]++;
20 if ((x==4)||(x==3))a[2]++;
21 }
22 for(it=p2.begin();it!=p2.end();it++)
23 if ((*it).second){
24 ans++;
25 a[(*it).first%3]--;
26 }
27 s=calc();
28 while (1){
29 sort(a,a+3);
30 a[0]++,a[1]++,a[2]--;
31 if (calc()>=s){
32 a[0]--,a[1]--,a[2]++;
33 break;
34 }
35 s=calc();
36 }
37 if (a[0]&1){
38 sort(a,a+3);
39 a[0]++,a[1]++,a[2]--;
40 }
41 printf("%d",ans+calc());
42 }

[atAGC051C]Flipper的更多相关文章

  1. Flipper

    Flipper Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  2. Flipper & React Native

    Flipper & React Native Flipper Flipper是一款用于调试移动应用程序的出色开发人员工具,在Android和iOS社区中颇受欢迎. Flipper is a g ...

  3. HDU 3328 Flipper 栈 模拟

    首先想说,英语太烂这题读了很长时间才读懂......题意是说输入有几张牌,然后输入这些牌的初始状态(是面朝上还是面朝下),然后输入操作方式,R表示翻一下右边的牌堆,L表示翻一下左边的牌堆,直到最后摞成 ...

  4. HDU 3328 Flipper

    题解:直接建n个栈,模拟过程即可…… #include <cstdio> #include <cstring> #include <stack> using nam ...

  5. HDU 3328 Flipper (stack)

    最近着手打基础,做做STL的题目,虽然一般STL题目难度不大,但需要加快速度的准确率............................. 本题有N张牌,一开始每个位置一张(正面朝上或者朝下),有 ...

  6. CSS3图片翻转切换案例及其中重要属性解析

    图片翻转切换,在不使用CSS3的情况下,一般都是使用JS实现动画,同时操作元素的width和left,或者height和top以模拟翻转的效果,并在适当时候改变src或者z-index实现图片切换. ...

  7. Android开发自学笔记(Android Studio)—4.4 AdapterView及其子类

    一.引言       AdapterView本身是一个抽象类,而它派生的子类在用法上也基本相似,只是在显示上有一定区别,因此把他们也归为一类.       AdapterView具有如下特征: Ada ...

  8. css旋转

    翻转180度 /* entire container, keeps perspective */ .flip-container { perspective: 1000; } /* flip the ...

  9. css动画属性性能

    性能主要表现:流量.功耗与流畅度 在现有的前端动画体系中,通常有两种模式:JS动画与CSS3动画. JS动画是通过JS动态改写样式实现动画能力的一种方案,在PC端兼容低端浏览器中不失为一种推荐方案. ...

随机推荐

  1. Go的Select

    Go 的通道有两种操作方式,一种是带 range 子句的 for 语句,另一种则是 select 语句,它是专门为了操作通道而存在的.这里主要介绍 select 的用法. 一.select的语法 se ...

  2. 解析csv数据绘制曲线图

    一个解析csv数据的小工具,所做项目中要查看脉冲图谱,经理就让我这个刚入职的小萌新写了个小程序.同事将csv格式的脉冲数据发给我,我的想法就是,将这些csv里的数据作为纵轴,x++为横轴,绘制出折线图 ...

  3. ReentrantLock可重入锁、公平锁非公平锁区别与实现原理

    ReentrantLock是lock接口的一个实现类,里面实现了可重入锁和公平锁非公平锁 ReentrantLock公平锁和不公平锁实现原理 公平锁会获取锁时会判断阻塞队列里是否有线程再等待,若有获取 ...

  4. python常用内置函数(转载)

    1. 和数字相关 1.1 数据类型 1.2 进制转换 1.3 数学运算 2. 和数据结构相关 2.1 序列 2.2 数据集合 2.3 相关内置函数 3. 和作用域相关 4. 和迭代器生成器相关 5. ...

  5. k8s replicaset controller 分析(3)-expectations 机制分析

    replicaset controller分析 replicaset controller简介 replicaset controller是kube-controller-manager组件中众多控制 ...

  6. [no code][scrum meeting] Beta 2

    例会时间:5月14日11:30,主持者:乔玺华 下次例会时间:5月15日11:30,主持者:肖思炀 一.工作汇报 人员 昨日完成任务 明日要完成的任务 乔玺华 - 开issue,分配时间 黎正宇 - ...

  7. Spring Cloud Alibaba 的服务注册与发现

    Spring Cloud Alibaba 服务发现例子 一.需求 1.提供者完成的功能 2.消费者完成的功能 3.可以附加的额外配置 二.实现步骤 1.总的依赖引入 2.服务提供者和发现者,引入服务发 ...

  8. 基于RequestBodyAdvice和ResponseBodyAdvice来实现spring中参数的加密和解密

    在日常开发中,有时候我们经常需要和第三方接口打交道,有时候是我们调用别人的第三方接口,有时候是别人在调用我们的第三方接口,那么为了调用接口的安全性,一般都会对传输的数据进行加密操作,如果每个接口都由我 ...

  9. CSP2021 翻车记

    DAY - INF 日常模拟赛被吊打,不知道为啥总是出一些小问题导致正解gg,成绩的话也就是中游吧,不过方差不小 DAY - 2 感冒了,头疼得很,签到题甚至也签到失败了,烦得很 DAY -1 全真体 ...

  10. python +spatialite + window 解决方案(https://www.jianshu.com/p/5bc7d8b7b429)

    运行环境在windows 10 64bit.先将python安装完成.然后,到 spatilite官网 找到MS(即Microsoft)版本,下载64位的mod_spatialite,将其先解压到目标 ...