Mask R-CNN用于目标检测和分割代码实现

Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

代码链接:https://github.com/matterport/Mask_RCNN

这是基于Python 3,Keras和TensorFlow 的Mask R-CNN的实现。该模型为图像中对象的每个实例生成边界框和分割masks。基于功能金字塔网络Feature Pyramid Network(FPN)和ResNet101主干网。

该存储库包括:

  • 基于FPN和ResNet101构建的Mask R-CNN的源代码。
  • MS COCO的训练代码
  • MS COCO的预训练权重
  • Jupyter说明文件电脑可在每个步骤可视化检测管线
  • 用于多GPU训练的Parallel Model类
  • 评估MS COCO指标(AP)
  • 自主数据集训练示例

该代码已记录并设计为易于扩展。如果在研究中使用,请考虑引用该存储库(下面的bibtex)。如果从事3D视觉工作,可能会发现最近发布的Matterport3D数据集也很有用。该数据集是由客户捕获的3D重构空间创建的,这些客户同意将其公开提供给学术用途。可以在此处看到更多示例。

开始启动

  • demo.ipynb是最简单的启动方法。显示了一个示例,该示例使用在MS COCO上进行预训练的模型来分割自己的图像中的对象。包括在任意图像上运行对象检测和实例分割的代码。
  • train_shapes.ipynb显示了如何在自己的数据集上训练Mask R-CNN。本说明文件介绍了玩具数据集(形状),以演示对新数据集的训练。
  • model.pyutils.pyconfig.py):这些文件包含主要Mask RCNN实现。
  • inspect_data.ipynb。该说明文件可视化了准备训练数据的不同预处理步骤。
  • inspect_model.ipynb本说明文件深入介绍了检测和分割对象所执行的步骤。提供了管道中每个步骤的可视化。
  • inspect_weights.ipynb 此说明文件检查经过训练的模型的权重,并查找异常和奇数模式。

逐步检测

为了帮助调试和理解模型,共有3个说明文件(inspect_data.ipynbinspect_model.ipynb, inspect_weights.ipynb)提供了很多可视化效果,并允许逐步运行模型以检查每个点的输出。这里有一些例子:

1.锚点排序和过滤

可视化第一阶段区域提议网络的每个步骤,并显示正锚和负锚以及锚框的细化。

2.边界框优化

这是最终检测框(虚线)的示例,在第二阶段对其进行了改进(实线)。

3.遮罩生成

生成的masks示例。然后将缩放并放置在正确位置的图像上。

4,分层激活

通常,检查不同层的激活以查找故障迹象(全零或随机噪声)通常很有用。

5.重量直方图

另一个有用的调试工具是检查重量直方图。这些都包含在inspect_weights.ipynb说明文件中。

6.登录到TensorBoard

TensorBoard是另一个出色的调试和可视化工具。该模型配置为记录损失并在每个时期结束时节省权重。

7.将不同的部分组合成最终结果

MS COCO训练

正在为MS COCO提供预训练的权重,以使其易于启动。可以将这些权重用作在网络上训练自己的变体的起点。训练和评估代码在中samples/coco/coco.py。可以在Jupyter说明文件中导入此模块(有关示例,请参阅提供的说明文件),也可以直接从命令行运行,如下所示:

# Train a new model starting from pre-trained COCO weights

python3 samples/coco/coco.py train --dataset=/path/to/coco/ --model=coco

# Train a new model starting from ImageNet weights

python3 samples/coco/coco.py train --dataset=/path/to/coco/ --model=imagenet

# Continue training a model that you had trained earlier

python3 samples/coco/coco.py train --dataset=/path/to/coco/ --model=/path/to/weights.h5

# Continue training the last model you trained. This will find

# the last trained weights in the model directory.

python3 samples/coco/coco.py train --dataset=/path/to/coco/ --model=last

还可以使用以下命令运行COCO评估代码:

# Run COCO evaluation on the last trained model

python3 samples/coco/coco.py evaluate --dataset=/path/to/coco/ --model=last

训练时间表,学习率和其参数应在中设置samples/coco/coco.py。

训练自己的数据集

首先阅读有关气球颜色飞溅示例的博客文章。涵盖了从注释图像到训练再到在示例应用程序中使用结果的过程。

总之,要在自己的数据集上训练模型,需要扩展两个类:

Config 此类包含默认配置。对其进行子类化,然后修改需要更改的属性。

Dataset 此类提供了使用任何数据集的一致方式。允许使用新的数据集进行训练,而无需更改模型的代码。还支持同时加载多个数据集,如果要检测的对象在一个数据集中并非全部可用,这将很有用。

见例子samples/shapes/train_shapes.ipynb,samples/coco/coco.py,samples/balloon/balloon.py,和samples/nucleus/nucleus.py。

与官方文件的差异

此实现大部分遵循Mask RCNN论文,但是在少数情况下,偏向于代码简单和通用化。这些是知道的一些差异。如果遇到其差异,请告诉。

  • 图像调整大小:为了支持每批训练多幅图像,将所有图像调整为相同大小。例如,在MS COCO上为1024x1024px。保留宽高比,因此,如果图像不是正方形,则将其填充为零。在本文中,进行了调整大小,以使最小的一面为800像素,最大的一面为1000像素。
  • 边界框:某些数据集提供边界框,而某些数据集仅提供masks。为了支持对多个数据集的训练,选择忽略数据集随附的边界框,而是动态生成。选择封装masks所有像素的最小框作为边界框。这简化了实现,并且还使图像增强很容易应用,否则图像增强将很难应用于边界框,例如图像旋转。

为了验证这种方法,将计算出的边界框与COCO数据集提供的边界框进行了比较。发现〜2%的边界框相差1px或更多,〜0.05%的边界相差5px或更多,只有0.01%的相差10px或更多。

  • 学习率:本文使用的学习率是0.02,但发现该值太高,通常会导致权重爆炸,尤其是在使用小批量时。这可能与Caffe和TensorFlow计算梯度之间的差异(批次与GPU之间的总和与均值)之间的差异有关。或者,也许官方模型使用渐变修剪来避免此问题。确实使用了梯度裁剪,但不要设置得太过激。发现,较小的学习率无论如何都会收敛得更快,因此继续这样做。

引文

使用以下bibtex引用此存储库:

@misc{matterport_maskrcnn_2017,

title={Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow},

author={Waleed Abdulla},

year={2017},

publisher={Github},

journal={GitHub repository},

howpublished={\url{https://github.com/matterport/Mask_RCNN}},

}

贡献

欢迎对该存储库做出贡献。可以做出贡献的示例:

  • 速度改进。就像在TensorFlow或Cython中重写一些Python代码一样。
  • 训练其数据集。
  • 精度提高。
  • 可视化和示例。

也可以加入团队,并帮助建立更多像这样的项目。

要求

列出了Python 3.4,TensorFlow 1.3,Keras 2.0.8和其常见软件包requirements.txt。

MS COCO要求:

要对MS COCO进行训练或测试,还需要:

如果使用Docker,则代码已通过验证可在此Docker容器上工作 。

安装

  1. copy此存储库
  2. 安装依赖

pip3 install -r requirements.txt

  1. 从存储库根目录运行安装程序

python3 setup.py安装

  1. 发布页面下载预训练的COCO权重(mask_rcnn_coco.h5)。
  2. (可选)pycocotools从这些存储库之一中进行MS COCO安装的训练或测试。是原始pycocotools的分支,具有针对Python3和Windows的修复(官方仓库似乎不再处于活动状态)。

Mask R-CNN用于目标检测和分割代码实现的更多相关文章

  1. 带你读AI论文丨用于目标检测的高斯检测框与ProbIoU

    摘要:本文解读了<Gaussian Bounding Boxes and Probabilistic Intersection-over-Union for Object Detection&g ...

  2. 【神经网络与深度学习】【计算机视觉】RCNN- 将CNN引入目标检测的开山之作

    转自:https://zhuanlan.zhihu.com/p/23006190?refer=xiaoleimlnote 前面一直在写传统机器学习.从本篇开始写一写 深度学习的内容. 可能需要一定的神 ...

  3. 使用Faster R-CNN做目标检测 - 学习luminoth代码

    像玩乐高一样拆解Faster R-CNN:详解目标检测的实现过程 https://mp.weixin.qq.com/s/M_i38L2brq69BYzmaPeJ9w 直接参考开源目标检测代码lumin ...

  4. Histograms of Sparse Codes for Object Detection用于目标检测的稀疏码直方图

    AbstractObject detection has seen huge progress in recent years, much thanks to the heavily-engineer ...

  5. OpenVINO 目标检测底层C++代码改写实现(待优化)

    System: Centos7.4 I:OpenVINO 的安装 refer:https://docs.openvinotoolkit.org/latest/_docs_install_guides_ ...

  6. tensorflow C++接口调用目标检测pb模型代码

    #include <iostream> #include "tensorflow/cc/ops/const_op.h" #include "tensorflo ...

  7. 关于目标检测 Object detection

    NO1.目标检测 (分类+定位) 目标检测(Object Detection)是图像分类的延伸,除了分类任务,还要给定多个检测目标的坐标位置.      NO2.目标检测的发展 R-CNN是最早基于C ...

  8. CVPR2020:三维实例分割与目标检测

    CVPR2020:三维实例分割与目标检测 Joint 3D Instance Segmentation and Object Detection for Autonomous Driving 论文地址 ...

  9. 目标检测网络之 Mask R-CNN

    Mask R-CNN 论文Mask R-CNN(ICCV 2017, Kaiming He,Georgia Gkioxari,Piotr Dollár,Ross Girshick, arXiv:170 ...

随机推荐

  1. 【小白向】基于Docker使用Gogs,Drone以及drone-runner-docker的自动化部署

    Gogs是基于Go语言编写的可以替代gitlab的代码托管平台,它没有gitlab那么庞大且不需要占用大量资源,对小型服务器相对于比较友好,我们甚至可以使用树莓派搭建. 服务器配置: * 操作系统:C ...

  2. LA2678最短子序列

    题意:       给你一个正整数序列,问你在里面找到一个最短的子序列,要求子序列的和大于等于k,输出序列长度. 思路:       这个序列的每个数字都是正整数,那么就比较好想了,我们可以直接枚举终 ...

  3. HTTPS协议工作原理(SSL数字证书)

    目录 HTTPS SSL协议的工作过程 SSL数字证书的查看 HTTPS 我们都知道HTTP协议是明文传输的,并且不能验证对方的身份,而且不能保证数据的完整性.而当我们在网络上进行购物电子交易时,电子 ...

  4. Idea一直卡在loading archetype list问题解决(或者报Unable to import maven project: See logs for details)

    暂时没有测试成功 https://blog.csdn.net/calo_missile/article/details/95898519

  5. Spring JPA使用CriteriaBuilder动态构造查询

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://www.cnblogs.com/mzdljgz/p/11495723. ...

  6. thinkphp中常用到的sql操作

    1.清空某表数据: $sql = 'truncate table table_name'; Db::execute($sql );

  7. 从 demo 到生产 - 手把手写出实战需求的 Flink 广播程序

    Flink 广播变量在实时处理程序中扮演着很重要的角色,适当的使用广播变量会大大提升程序处理效率. 本文从简单的 demo 场景出发,引入生产中实际的需求并提出思路与部分示例代码,应对一般需求应该没有 ...

  8. repo sync error: .repo/manifests/: contains uncommitted changes

    andorid 源码库同步,报错如标题,好几次想放弃,尝试了网上不少办法,无效, 最终从 stackoverflow 得到答案: After issued repo sync, I got a err ...

  9. ALPHA任务拆解

    项目 内容 这个作业属于哪个课程 BUAA2020软件工程 这个作业的要求在哪里 作业要求 我们在这个课程的目标是 学会团队合作,共同开发一个完整的项目 这个作业在哪个具体方面帮助我们实现目标 团队任 ...

  10. [Java] SpringBoot

    背景 简化SSM(H)中大量的配置工作,开发人员只关心提供业务功能 可以看成简化了的.按照约定开发的SSM(H) 概念 JavaBean:满足规范的Java类(属性private+默认构造方法+get ...