The ministers of the cabinet were quite upset by the message from the Chief of Security stating that they would all have to change the four-digit room numbers on their offices.
— It is a matter of security to change such things every now and then, to keep the enemy in the dark.
— But look, I have chosen my number 103310331033 for good reasons. I am the Prime minister, you know!
— I know, so therefore your new number 817981798179 is also a prime. You will just have to paste four new digits over the four old ones on your office door.
— No, it’s not that simple. Suppose that I change the first digit to an 888, then the number will read 8033 which is not a prime!
— I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds.
— Correct! So I must invent a scheme for going from 103310331033 to 817981798179 by a path of prime numbers where only one digit is changed from one prime to the next prime.

Now, the minister of finance, who had been eavesdropping, intervened.

— No unnecessary expenditure, please! I happen to know that the price of a digit is one pound.
— Hmm, in that case I need a computer program to minimize the cost. You don’t know some very cheap software gurus, do you?
— In fact, I do. You see, there is this programming contest going on… Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above.

1033

1733

3733

3739

3779

8779

8179

The cost of this solution is 666 pounds. Note that the digit 111 which got pasted over in step 222 can not be reused in the last step – a new 111 must be purchased.

Input

One line with a positive number: the number of test cases (at most 100100100). Then for each test case, one line with two numbers separated by a blank. Both numbers are four-digit primes (without leading zeros).

Output

One line for each case, either with a number stating the minimal cost or containing the word Impossible.

Examples

Input

3
1033 8179
1373 8017
1033 1033

Output

6
7
0

题意

给出两个四位的素数n,mn,mn,m,要求nnn每次只能变换一位,并且变换后的数字依旧是素数。

求nnn经过多少步变换能够变成mmm;如果nnn无法变成mmm,输出Impossible

思路

将nnn的四位数字拆分了,每次变换一位,来判断是否符合条件,如果符合条件,将新数字加入队列,至到数字和mmm相等,或队列为空

AC代码

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <math.h>
#include <limits.h>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#include <set>
#include <string>
#include <time.h>
#define ll long long
#define ull unsigned long long
#define ms(a,b) memset(a,b,sizeof(a))
#define pi acos(-1.0)
#define INF 0x7f7f7f7f
#define lson o<<1
#define rson o<<1|1
#define bug cout<<"-------------"<<endl
#define debug(...) cerr<<"["<<#__VA_ARGS__":"<<(__VA_ARGS__)<<"]"<<"\n"
const int maxn=1e4+10;
const int mod=1e9+7;
using namespace std;
int vis[maxn];
int _vis[maxn];
int cnt;
struct node
{
int num;
int step;
};
int bfs(int n,int m)
{
ms(_vis,0);
int newnum;
node p,q;
queue<node>que;
p.num=n;
p.step=0;
que.push(p);
_vis[n]=1;
while(!que.empty())
{
q=que.front();
que.pop();
if(q.num==m)
return q.step;
int get[4];
int N=q.num;
int _=0;
while(N)
{
get[_++]=N%10;
N/=10;
}
for(int i=0;i<4;i++)
{
int __=get[i];
for(int j=0;j<=9;j++)
{
if(get[i]!=j)
{
get[i]=j;
newnum=get[0]+get[1]*10+get[2]*100+get[3]*1000;
}
if(!vis[newnum]&&newnum>=1000&&newnum<10000&&!_vis[newnum])
{
p.num=newnum;
p.step=q.step+1;
_vis[newnum]=1;
que.push(p);
}
}
get[i]=__;
}
}
return -1;
}
void init()
{
vis[0]=vis[1]=1;
for(int i=2;i<maxn;i++)
{
if(!vis[i])
{
for(int j=2;j*i<maxn;j++)
vis[i*j]=1;
}
}
}
int main(int argc, char const *argv[])
{
ios::sync_with_stdio(false);
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
double _begin_time = clock();
#endif
init();
int t;
cin>>t;
while(t--)
{
int n,m;
cin>>n>>m;
int ans=bfs(n,m);
if(ans==-1)
cout<<"Impossible"<<endl;
else
cout<<ans<<endl;
}
#ifndef ONLINE_JUDGE
long _end_time = clock();
printf("time = %lf ms.", _end_time - _begin_time);
#endif
return 0;
}

POJ 3126:Prime Path(素数+BFS)的更多相关文章

  1. POJ 3126 Prime Path (bfs+欧拉线性素数筛)

    Description The ministers of the cabinet were quite upset by the message from the Chief of Security ...

  2. POJ - 3126 Prime Path 素数筛选+BFS

    Prime Path The ministers of the cabinet were quite upset by the message from the Chief of Security s ...

  3. POJ - 3126 - Prime Path(BFS)

    Prime Path POJ - 3126 题意: 给出两个四位素数 a , b.然后从a开始,每次可以改变四位中的一位数字,变成 c,c 可以接着变,直到变成b为止.要求 c 必须是素数.求变换次数 ...

  4. (简单) POJ 3126 Prime Path,BFS。

    Description The ministers of the cabinet were quite upset by the message from the Chief of Security ...

  5. POJ 3126 Prime Path 素数筛,bfs

    题目: http://poj.org/problem?id=3126 困得不行了,没想到敲完一遍直接就A了,16ms,debug环节都没进行.人品啊. #include <stdio.h> ...

  6. poj 3126 Prime Path 【bfs】

    题目地址:http://poj.org/problem?id=3126 Input One line with a positive number: the number of test cases ...

  7. POJ 3126 Prime Path (BFS)

    [题目链接]click here~~ [题目大意]给你n,m各自是素数,求由n到m变化的步骤数,规定每一步仅仅能改变个十百千一位的数,且变化得到的每个数也为素数 [解题思路]和poj 3278类似.b ...

  8. POJ 3126 Prime Path【BFS】

    <题目链接> 题目大意: 给你两个四位数,它们均为素数,以第一个四位数作为起点,每次能够变换该四位数的任意一位,变换后的四位数也必须是素数,问你是否能够通过变换使得第一个四位数变成第二个四 ...

  9. POJ 3126 Prime Path(BFS算法)

    思路:宽度优先搜索(BFS算法) #include<iostream> #include<stdio.h> #include<cmath> #include< ...

  10. POJ 3126 Prime Path(素数路径)

    POJ 3126 Prime Path(素数路径) Time Limit: 1000MS    Memory Limit: 65536K Description - 题目描述 The minister ...

随机推荐

  1. 日常Java 2021/10/17

    今天开始Javaweb编译环境调试,从tomcat容器开始,然后mysql的下载,连接工具datagrip,navicat for mysql,然后就是编写自己的sql,安装jdbc,eclipse连 ...

  2. day01 MySQL发展史

    day01 MySQL发展史 今日内容概要 数据库演变史 软件开发架构 数据库本质 数据库中的重要概念 MySQL下载与安装 基本SQL语句 今日内容详细 数据库演变史 # 1.文件操作阶段 jaso ...

  3. MySQL自我保护参数

    上文(MySQL自我保护工具--pt-kill )提到用pt-kill工具来kill相关的会话,来达到保护数据库的目的,本文再通过修改数据库参数的方式达到阻断长时间运行的SQL的目的. 1.参数介绍 ...

  4. JAXB—Java类与XML文件之间转换

    JAXB-Java类与XML文件之间转换 简介         JAXB(Java Architecture for XML Binding) 是一个业界的标准,是一项可以根据XML Schema产生 ...

  5. 转 proguard 混淆工具的用法 (适用于初学者参考)

    转自:https://www.cnblogs.com/lmq3321/p/10320671.html 一. ProGuard简介 附:proGuard官网 因为Java代码是非常容易反编码的,况且An ...

  6. Android Menu的基本用法

    使用xml定义Menu 菜单资源文件必须放在res/menu目录中.菜单资源文件必须使用<menu>标签作为根节点.除了<menu>标签外,还有另外两个标签用于设置菜单项和分组 ...

  7. Linux:awk与cut命令的区别

    结论:awk 以空格为分割域时,是以单个或多个连续的空格为分隔符的;cut则是以单个空格作为分隔符.

  8. 如何在linux 上配置NTP 时间同步?

    故障现象: 有些应用场景,对时间同步的要求严格,需要用到NTP同步,如何在linux上配置NTP时间同步? 解决方案: 在linux 上配置NTP 时间同步,具休操作步骤,整理如下: 1.安装软件包( ...

  9. 基于jar的Spring Boot工程

    一.Spring Boot简介 Spring Boot是由Pivotal[ˈpɪvətl]团队(一家做大数据的公司)提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程.该框架 ...

  10. Consumer方法结合Lambda表达式的应用

    package com.itheima.demo05.Consumer;import java.util.function.Consumer;/** * @author newcityman * @d ...