The ministers of the cabinet were quite upset by the message from the Chief of Security stating that they would all have to change the four-digit room numbers on their offices.
— It is a matter of security to change such things every now and then, to keep the enemy in the dark.
— But look, I have chosen my number 103310331033 for good reasons. I am the Prime minister, you know!
— I know, so therefore your new number 817981798179 is also a prime. You will just have to paste four new digits over the four old ones on your office door.
— No, it’s not that simple. Suppose that I change the first digit to an 888, then the number will read 8033 which is not a prime!
— I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds.
— Correct! So I must invent a scheme for going from 103310331033 to 817981798179 by a path of prime numbers where only one digit is changed from one prime to the next prime.

Now, the minister of finance, who had been eavesdropping, intervened.

— No unnecessary expenditure, please! I happen to know that the price of a digit is one pound.
— Hmm, in that case I need a computer program to minimize the cost. You don’t know some very cheap software gurus, do you?
— In fact, I do. You see, there is this programming contest going on… Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above.

1033

1733

3733

3739

3779

8779

8179

The cost of this solution is 666 pounds. Note that the digit 111 which got pasted over in step 222 can not be reused in the last step – a new 111 must be purchased.

Input

One line with a positive number: the number of test cases (at most 100100100). Then for each test case, one line with two numbers separated by a blank. Both numbers are four-digit primes (without leading zeros).

Output

One line for each case, either with a number stating the minimal cost or containing the word Impossible.

Examples

Input

3
1033 8179
1373 8017
1033 1033

Output

6
7
0

题意

给出两个四位的素数n,mn,mn,m,要求nnn每次只能变换一位,并且变换后的数字依旧是素数。

求nnn经过多少步变换能够变成mmm;如果nnn无法变成mmm,输出Impossible

思路

将nnn的四位数字拆分了,每次变换一位,来判断是否符合条件,如果符合条件,将新数字加入队列,至到数字和mmm相等,或队列为空

AC代码

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <math.h>
#include <limits.h>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#include <set>
#include <string>
#include <time.h>
#define ll long long
#define ull unsigned long long
#define ms(a,b) memset(a,b,sizeof(a))
#define pi acos(-1.0)
#define INF 0x7f7f7f7f
#define lson o<<1
#define rson o<<1|1
#define bug cout<<"-------------"<<endl
#define debug(...) cerr<<"["<<#__VA_ARGS__":"<<(__VA_ARGS__)<<"]"<<"\n"
const int maxn=1e4+10;
const int mod=1e9+7;
using namespace std;
int vis[maxn];
int _vis[maxn];
int cnt;
struct node
{
int num;
int step;
};
int bfs(int n,int m)
{
ms(_vis,0);
int newnum;
node p,q;
queue<node>que;
p.num=n;
p.step=0;
que.push(p);
_vis[n]=1;
while(!que.empty())
{
q=que.front();
que.pop();
if(q.num==m)
return q.step;
int get[4];
int N=q.num;
int _=0;
while(N)
{
get[_++]=N%10;
N/=10;
}
for(int i=0;i<4;i++)
{
int __=get[i];
for(int j=0;j<=9;j++)
{
if(get[i]!=j)
{
get[i]=j;
newnum=get[0]+get[1]*10+get[2]*100+get[3]*1000;
}
if(!vis[newnum]&&newnum>=1000&&newnum<10000&&!_vis[newnum])
{
p.num=newnum;
p.step=q.step+1;
_vis[newnum]=1;
que.push(p);
}
}
get[i]=__;
}
}
return -1;
}
void init()
{
vis[0]=vis[1]=1;
for(int i=2;i<maxn;i++)
{
if(!vis[i])
{
for(int j=2;j*i<maxn;j++)
vis[i*j]=1;
}
}
}
int main(int argc, char const *argv[])
{
ios::sync_with_stdio(false);
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
double _begin_time = clock();
#endif
init();
int t;
cin>>t;
while(t--)
{
int n,m;
cin>>n>>m;
int ans=bfs(n,m);
if(ans==-1)
cout<<"Impossible"<<endl;
else
cout<<ans<<endl;
}
#ifndef ONLINE_JUDGE
long _end_time = clock();
printf("time = %lf ms.", _end_time - _begin_time);
#endif
return 0;
}

POJ 3126:Prime Path(素数+BFS)的更多相关文章

  1. POJ 3126 Prime Path (bfs+欧拉线性素数筛)

    Description The ministers of the cabinet were quite upset by the message from the Chief of Security ...

  2. POJ - 3126 Prime Path 素数筛选+BFS

    Prime Path The ministers of the cabinet were quite upset by the message from the Chief of Security s ...

  3. POJ - 3126 - Prime Path(BFS)

    Prime Path POJ - 3126 题意: 给出两个四位素数 a , b.然后从a开始,每次可以改变四位中的一位数字,变成 c,c 可以接着变,直到变成b为止.要求 c 必须是素数.求变换次数 ...

  4. (简单) POJ 3126 Prime Path,BFS。

    Description The ministers of the cabinet were quite upset by the message from the Chief of Security ...

  5. POJ 3126 Prime Path 素数筛,bfs

    题目: http://poj.org/problem?id=3126 困得不行了,没想到敲完一遍直接就A了,16ms,debug环节都没进行.人品啊. #include <stdio.h> ...

  6. poj 3126 Prime Path 【bfs】

    题目地址:http://poj.org/problem?id=3126 Input One line with a positive number: the number of test cases ...

  7. POJ 3126 Prime Path (BFS)

    [题目链接]click here~~ [题目大意]给你n,m各自是素数,求由n到m变化的步骤数,规定每一步仅仅能改变个十百千一位的数,且变化得到的每个数也为素数 [解题思路]和poj 3278类似.b ...

  8. POJ 3126 Prime Path【BFS】

    <题目链接> 题目大意: 给你两个四位数,它们均为素数,以第一个四位数作为起点,每次能够变换该四位数的任意一位,变换后的四位数也必须是素数,问你是否能够通过变换使得第一个四位数变成第二个四 ...

  9. POJ 3126 Prime Path(BFS算法)

    思路:宽度优先搜索(BFS算法) #include<iostream> #include<stdio.h> #include<cmath> #include< ...

  10. POJ 3126 Prime Path(素数路径)

    POJ 3126 Prime Path(素数路径) Time Limit: 1000MS    Memory Limit: 65536K Description - 题目描述 The minister ...

随机推荐

  1. C语言之内核中的struct list_head 结构体

    以下地址文章解释很好 http://blog.chinaunix.net/uid-27122224-id-3277511.html 对下面的结构体分析 1 struct person 2 { 3 in ...

  2. 容器中的容器——利用Dind实现开箱即用的K3s

    我在学习 Rancher 和 Minikube 的时候,发现它们都可以在自己的容器环境中提供一个 K3s 或 K8s 集群.尤其是 Minikube ,用户可以在它的容器环境中执行 docker ps ...

  3. .Net 下高性能分表分库组件-连接模式原理

    ShardingCore ShardingCore 一款ef-core下高性能.轻量级针对分表分库读写分离的解决方案,具有零依赖.零学习成本.零业务代码入侵. Github Source Code 助 ...

  4. 网卡命令ifconfig

    • ifconfig • service network restart • ifdown eth0 • ifdown eth0 #linux下run networkexport USER=lizhe ...

  5. Leetcode中的SQL题目练习(一)

    595. Big Countries https://leetcode.com/problems/big-countries/description/ Description name contine ...

  6. linux vi(vim)常用命令汇总(转)

    前言 首先解析一个vim vi是unix/linux下极为普遍的一种文本编辑器,大部分机器上都有vi的各种变种,在不同的机器上常用不同的变种软件,其中vim比较好用也用的比较广泛.vim是Vi Imp ...

  7. Git命令行演练-团队开发

    ** 团队开发必须有一个共享库,这样成员之间才可以进行协作开发** ### 0. 共享库分类    > 本地共享库(只能在本地面对面操作)        - 电脑文件夹/U盘/移动硬盘    & ...

  8. Servlet(3):Cookie和Session

    一. Cookie Cookie是客户端技术,程序把每个用户的数据以cookie的形式写给用户各自的浏览器.当用户使用浏览器再去访问服务器中的web资源时,就会带着各自的数据去.这样,web资源处理的 ...

  9. Oracle SQL中join方式总结

    在ORACLE数据库中,表与表之间的SQL JOIN方式有多种(不仅表与表,还可以表与视图.物化视图等联结).SQL JOIN其实是一个逻辑概念,像NEST LOOP JOIN. HASH JOIN等 ...

  10. Linux 下使用rtcwake实现定时休眠和唤醒设备

    查看是否安装rtcwake whereis rtcwake rtcwake: /usr/sbin/rtcwake /usr/share/man/man8/rtcwake.8.gz 查看rtcwake帮 ...