EMA
源
Exponential moving average (EMA) 是一个非常有用的trick, 起到加速训练的作用. 近来发现, 该技巧还可以用于提高网络鲁棒性(约1% ~ 2%). EMA的流程很简单, \(f(\cdot;\theta)\)是我们用于训练的网络, 则在每次迭代结束后进行:
\]
其中\(\theta'\)是\(f'(\cdot; \theta')\)网络的参数, \(f', f\)的网络初始化是一致的, 另外\(f'\)的网络参数的更新仅仅通过上式.
一般情况下, 对抗训练用\(f(\cdot; \theta)\)来生成对抗样本, 即
\]
来获得, 而我想的能不能
\]
背后的直觉是, \(f'\)相较于\(f\)更为平稳, 则由其产生的对抗样本的分布更加稳定, 则\(f\)拟合起来会不会更加容易?
我在一个8层的网络上进行测试, 结果不如人意:
设置
| model | cifar |
|---|---|
| dataset | CIFAR-10 |
| attack | PGD |
| epsilon | 8/255 |
| stepsize | 2/255 |
| steps | 10 |
| loss | cross entropy |
| optimizer | sgd |
| momentum | 0.9 |
| beta1 | 0.9 |
| beta2 | 0.999 |
| weight_decay | 2e-4 |
| leaning_rate | 0.1 |
| learning_policy | AT |
| epochs | 200 |
| batch_size | 128 |
| transform | default |
| seed | 1 |
| alpha | 0.999 |
结果
| Accuracy | Robustness | |
|---|---|---|
| EMA* | ![]() |
![]() |
| EMA | ![]() |
![]() |
| EMA + GroupNorm | ![]() |
![]() |
上图中, EMA是原本的逻辑, 可见其的确能加速训练(Shadow表示\(f'\)), 虽然最后的结果是降了点, 这主要是参数没调好, 毕竟对抗训练很容易过拟合. 但是我们的直接却完全不起作用, 这让我非常困惑, 因为, 我料想的最差的结果, 也应当是鲁棒性不怎样, 不能精度和鲁棒性都很差, 因为虽然是通过\(f'\)生成的对抗样本, 这些对抗样本依旧是满足$|x_{adv} - x|_{\infty} \le 8 /255 $ 的,所以应该是没问题的.
于是我又尝试让\(\alpha\)由\(0\)慢慢增加到\(0.999\), 但是结果依然不容乐观. 我料想是batch normalization的问题, 于是换了group normlization:
虽然结果似乎表明我们的直觉完全是错误的, 但是还是体会到了 normalization 的重要性, BN很难应对不同分布.
EMA的更多相关文章
- 股票中的数学:EMA的推导01
说明:本人并不炒股,原因很简单:没钱.当然了,作为一名IT工作者,因为工作需要和个人兴趣,就有了本系列文章.阅读本系列文章不需要任何高深的知识,哪怕是一个像我这样从未真正炒过股的人也没关系.但本文还是 ...
- EMA计算的C#实现(c# Exponential Moving Average (EMA) indicator )
原来国外有个源码(TechnicalAnalysisEngine src 1.25)内部对EMA的计算是: var copyInputValues = input.ToList(); for (int ...
- 新修改了EMA的计算方法,合并线性回归率的计算。和通达信的结果一模一样
using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...
- WeQuant交易策略—EMA指标
策略名称:EMA指标策略关键词:指数移动平均.双均线.动态止损.方法:1)用快慢两条指数移动平均线的交叉作为买入卖出信号:2)快线自下而上穿过慢线,买入:自上而下穿过慢线,卖出:3)持仓期间计算净值的 ...
- 新概念英语(1-9)How is Ema?
A:Hello Helen. B:Hi Steven. A:How are you today? B:I'm very well, thank you. And you? A:I'm fine tha ...
- tensorflow(3):神经网络优化(ema,regularization)
1.指数滑动平均 (ema) 描述滑动平均: with tf.control_dependencies([train_step,ema_op]) 将计算滑动平均与 训练过程绑在一起运行 train_o ...
- 多种移动平均计算总结(MA,EMA,SMA,DMA,TMA,WMA)
多种移动平均计算总结 股票期货里面经常会遇到这些公式,通达信,同花顺,文华,基本都有.作为一个程序员觉得网上比较的思路不清晰,在此做个总结,一目了然. 一.函数简介 MA(x,n)-移动平均,是最简单 ...
- 【优化技巧】指数移动平均EMA的原理
前言 在深度学习中,经常会使用EMA(exponential moving average)方法对模型的参数做平滑或者平均,以求提高测试指标,增加模型鲁棒性. 参考 1. [优化技巧]指数移动平均(E ...
- EMA指数平滑移动平均
英文参考:http://www.incrediblecharts.com/indicators/exponential_moving_average.php Exponential moving av ...
- EMA algorithm: https://blog.csdn.net/m0_38106113/article/details/81542863
EMA algorithm: https://blog.csdn.net/m0_38106113/article/details/81542863
随机推荐
- 学习java 7.1
学习内容:数组的定义格式:int[ ] arr; int arr[ ]; 数组的动态初始化:int[ ] arr = new int[ ];静态初始化:int[ ] arr = new int[ ] ...
- flink-----实时项目---day05-------1. ProcessFunction 2. apply对窗口进行全量聚合 3使用aggregate方法实现增量聚合 4.使用ProcessFunction结合定时器实现排序
1. ProcessFunction ProcessFunction是一个低级的流处理操作,可以访问所有(非循环)流应用程序的基本构建块: event(流元素) state(容错,一致性,只能在Key ...
- 【SpringBoot】几种定时任务的实现方式
SpringBoot 几种定时任务的实现方式 Wan QingHua 架构之路 定时任务实现的几种方式: Timer:这是java自带的java.util.Timer类,这个类允许你调度一个java ...
- Linux下查看JDK安装路径
在安装好Git.JDK和jenkins之后,就需要在jenkins中进行对应的设置,比如在全局工具配置模块,需要写入JDK的安装路径. 这篇博客,介绍几种常见的在Linux中查看JDK路径的方法... ...
- win10安装两台mysql-5.7.31实例
1. 下载 mysql5.7.31 压缩包: (1)百度云下载: 链接:https://pan.baidu.com/s/1jgxfvIYzg8B8ahxU9pF6lg 提取码:fiid (2)官网下载 ...
- MyEclipse配置Hibernate框架(基础篇)
一.创建java project项目 二.项目右键Configure Facets -- Install Hibernate Facet 三.项目添加对应数据库的jar包 四.编写实体类 packag ...
- Python 中更安全的 eval
问题 想要将一段列表形式的字符串转为 list,但是担心这个动态的字符串可能是恶意的代码?使用 eval 将带来安全隐患.比如: # 期望是 eval('[1, 2, 3]') # 实际上是 eval ...
- MemoryCache 如何清除全部缓存?
最近有个需求需要定时清理服务器上所有的缓存.本来以为很简单的调用一下 MemoryCache.Clear 方法就完事了.谁知道 MemoryCache 类以及 IMemoryCache 扩展方法都没有 ...
- WebRTC音频通话升级为视频通话
我们有时候在音频通话过程中,想要改成视频通话.如果挂断当前通话再重新发起视频通话就会显得比较麻烦. 因此很多app提供了将音频通话升级成视频通话的功能,同时也有将视频通话降为音频通话的功能. 本文演示 ...
- CF60A Where Are My Flakes? 题解
Content 有人发现他的麦片不见了,原来是室友把它藏在了 \(n\) 个盒子中的一个,另外还有 \(m\) 个提示,有两种: \(\texttt{To the left of }x\):麦片在第 ...





