EMA
源
Exponential moving average (EMA) 是一个非常有用的trick, 起到加速训练的作用. 近来发现, 该技巧还可以用于提高网络鲁棒性(约1% ~ 2%). EMA的流程很简单, \(f(\cdot;\theta)\)是我们用于训练的网络, 则在每次迭代结束后进行:
\]
其中\(\theta'\)是\(f'(\cdot; \theta')\)网络的参数, \(f', f\)的网络初始化是一致的, 另外\(f'\)的网络参数的更新仅仅通过上式.
一般情况下, 对抗训练用\(f(\cdot; \theta)\)来生成对抗样本, 即
\]
来获得, 而我想的能不能
\]
背后的直觉是, \(f'\)相较于\(f\)更为平稳, 则由其产生的对抗样本的分布更加稳定, 则\(f\)拟合起来会不会更加容易?
我在一个8层的网络上进行测试, 结果不如人意:
设置
model | cifar |
---|---|
dataset | CIFAR-10 |
attack | PGD |
epsilon | 8/255 |
stepsize | 2/255 |
steps | 10 |
loss | cross entropy |
optimizer | sgd |
momentum | 0.9 |
beta1 | 0.9 |
beta2 | 0.999 |
weight_decay | 2e-4 |
leaning_rate | 0.1 |
learning_policy | AT |
epochs | 200 |
batch_size | 128 |
transform | default |
seed | 1 |
alpha | 0.999 |
结果
Accuracy | Robustness | |
---|---|---|
EMA* | ![]() |
![]() |
EMA | ![]() |
![]() |
EMA + GroupNorm | ![]() |
![]() |
上图中, EMA是原本的逻辑, 可见其的确能加速训练(Shadow表示\(f'\)), 虽然最后的结果是降了点, 这主要是参数没调好, 毕竟对抗训练很容易过拟合. 但是我们的直接却完全不起作用, 这让我非常困惑, 因为, 我料想的最差的结果, 也应当是鲁棒性不怎样, 不能精度和鲁棒性都很差, 因为虽然是通过\(f'\)生成的对抗样本, 这些对抗样本依旧是满足$|x_{adv} - x|_{\infty} \le 8 /255 $ 的,所以应该是没问题的.
于是我又尝试让\(\alpha\)由\(0\)慢慢增加到\(0.999\), 但是结果依然不容乐观. 我料想是batch normalization的问题, 于是换了group normlization:
虽然结果似乎表明我们的直觉完全是错误的, 但是还是体会到了 normalization 的重要性, BN很难应对不同分布.
EMA的更多相关文章
- 股票中的数学:EMA的推导01
说明:本人并不炒股,原因很简单:没钱.当然了,作为一名IT工作者,因为工作需要和个人兴趣,就有了本系列文章.阅读本系列文章不需要任何高深的知识,哪怕是一个像我这样从未真正炒过股的人也没关系.但本文还是 ...
- EMA计算的C#实现(c# Exponential Moving Average (EMA) indicator )
原来国外有个源码(TechnicalAnalysisEngine src 1.25)内部对EMA的计算是: var copyInputValues = input.ToList(); for (int ...
- 新修改了EMA的计算方法,合并线性回归率的计算。和通达信的结果一模一样
using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...
- WeQuant交易策略—EMA指标
策略名称:EMA指标策略关键词:指数移动平均.双均线.动态止损.方法:1)用快慢两条指数移动平均线的交叉作为买入卖出信号:2)快线自下而上穿过慢线,买入:自上而下穿过慢线,卖出:3)持仓期间计算净值的 ...
- 新概念英语(1-9)How is Ema?
A:Hello Helen. B:Hi Steven. A:How are you today? B:I'm very well, thank you. And you? A:I'm fine tha ...
- tensorflow(3):神经网络优化(ema,regularization)
1.指数滑动平均 (ema) 描述滑动平均: with tf.control_dependencies([train_step,ema_op]) 将计算滑动平均与 训练过程绑在一起运行 train_o ...
- 多种移动平均计算总结(MA,EMA,SMA,DMA,TMA,WMA)
多种移动平均计算总结 股票期货里面经常会遇到这些公式,通达信,同花顺,文华,基本都有.作为一个程序员觉得网上比较的思路不清晰,在此做个总结,一目了然. 一.函数简介 MA(x,n)-移动平均,是最简单 ...
- 【优化技巧】指数移动平均EMA的原理
前言 在深度学习中,经常会使用EMA(exponential moving average)方法对模型的参数做平滑或者平均,以求提高测试指标,增加模型鲁棒性. 参考 1. [优化技巧]指数移动平均(E ...
- EMA指数平滑移动平均
英文参考:http://www.incrediblecharts.com/indicators/exponential_moving_average.php Exponential moving av ...
- EMA algorithm: https://blog.csdn.net/m0_38106113/article/details/81542863
EMA algorithm: https://blog.csdn.net/m0_38106113/article/details/81542863
随机推荐
- map/multimap深度探索
map/multimap同样以rb_tree为底层结构,同样有元素自动排序的特性,排序的依据为key. 我们无法通过迭代器来更改map/multimap的key值,这个并不是因为rb_tree不允许, ...
- 转 android design library提供的TabLayout的用法
原文出处:http://chenfuduo.me/2015/07/30/TabLayout-of-design-support-library/ 在开发中,我们常常需要ViewPager结合Fragm ...
- 队列——Java实现
1 package struct; 2 3 interface IQueue{ 4 //入队列 5 void add(Object obj); 6 //出队列 7 Object remove(); 8 ...
- spring注解-bean生命周期
https://www.jianshu.com/p/70b935f2b3fe bean的生命周期 bean创建---初始化----销毁的过程 容器管理bean的生命周期 对象创建:容器启动后调用bea ...
- OSGI 理论知识
下面列出了主要的控制台命令: 表 1. Equinox OSGi 主要的控制台命令表 类别 命令 含义 控制框架 launch 启动框架 shutdown 停止框架 close 关闭.退出框架 exi ...
- 如何使用gitHub管理自己的项目
GitHub 与 Git Git是一种分布式版本控制系统,与svn是同样的概念 GitHub是一个网站,提供Git服务 前提:你的本机电脑已经安装了git,并且已经注册了gitHub账号 Git上传本 ...
- 拉格朗日乘子法(Lagrange Multiplier) 和KKT条件
参考文献:https://www.cnblogs.com/sddai/p/5728195.html 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush ...
- Reids安全加固
目录 一.简介 二.加固方案 一.简介 Redis 因配置不当存在未授权访问漏洞,可以被攻击者恶意利用. 在特定条件下,如果Redis以root身份运行,黑客可以给root账号写入SSH公钥文件,直接 ...
- Android工具 - SQLITE3
原创文章,如有转载,请注明出处:http://blog.csdn.net/yihui823/article/details/6689922 本文章的前提:已经安装了Eclipse和ADT.androi ...
- [BUUCTF]REVERSE——SimpleRev
SimpleRev 附件 步骤: 例行查壳儿,,无壳,64位程序 64位ida载入,看main函数 关键代码段在Decry函数里 unsigned __int64 Decry() { char v1; ...