目录

Exponential moving average (EMA) 是一个非常有用的trick, 起到加速训练的作用. 近来发现, 该技巧还可以用于提高网络鲁棒性(约1% ~ 2%). EMA的流程很简单, \(f(\cdot;\theta)\)是我们用于训练的网络, 则在每次迭代结束后进行:

\[\theta' = \alpha \cdot \theta' + (1 - \alpha) \cdot \theta,
\]

其中\(\theta'\)是\(f'(\cdot; \theta')\)网络的参数, \(f', f\)的网络初始化是一致的, 另外\(f'\)的网络参数的更新仅仅通过上式.

一般情况下, 对抗训练用\(f(\cdot; \theta)\)来生成对抗样本, 即

\[x_{adv} := \arg \max_{\|x'-x\|\le \epsilon} \mathcal{L}(f(x'),y),
\]

来获得, 而我想的能不能

\[x_{adv} := \arg \max_{\|x'-x\|\le \epsilon} \mathcal{L}(f'(x'),y).
\]

背后的直觉是, \(f'\)相较于\(f\)更为平稳, 则由其产生的对抗样本的分布更加稳定, 则\(f\)拟合起来会不会更加容易?

我在一个8层的网络上进行测试, 结果不如人意:

设置

model cifar
dataset CIFAR-10
attack PGD
epsilon 8/255
stepsize 2/255
steps 10
loss cross entropy
optimizer sgd
momentum 0.9
beta1 0.9
beta2 0.999
weight_decay 2e-4
leaning_rate 0.1
learning_policy AT
epochs 200
batch_size 128
transform default
seed 1
alpha 0.999

结果

Accuracy Robustness
EMA*
EMA
EMA + GroupNorm

上图中, EMA是原本的逻辑, 可见其的确能加速训练(Shadow表示\(f'\)), 虽然最后的结果是降了点, 这主要是参数没调好, 毕竟对抗训练很容易过拟合. 但是我们的直接却完全不起作用, 这让我非常困惑, 因为, 我料想的最差的结果, 也应当是鲁棒性不怎样, 不能精度和鲁棒性都很差, 因为虽然是通过\(f'\)生成的对抗样本, 这些对抗样本依旧是满足$|x_{adv} - x|_{\infty} \le 8 /255 $ 的,所以应该是没问题的.

于是我又尝试让\(\alpha\)由\(0\)慢慢增加到\(0.999\), 但是结果依然不容乐观. 我料想是batch normalization的问题, 于是换了group normlization:

虽然结果似乎表明我们的直觉完全是错误的, 但是还是体会到了 normalization 的重要性, BN很难应对不同分布.

EMA的更多相关文章

  1. 股票中的数学:EMA的推导01

    说明:本人并不炒股,原因很简单:没钱.当然了,作为一名IT工作者,因为工作需要和个人兴趣,就有了本系列文章.阅读本系列文章不需要任何高深的知识,哪怕是一个像我这样从未真正炒过股的人也没关系.但本文还是 ...

  2. EMA计算的C#实现(c# Exponential Moving Average (EMA) indicator )

    原来国外有个源码(TechnicalAnalysisEngine src 1.25)内部对EMA的计算是: var copyInputValues = input.ToList(); for (int ...

  3. 新修改了EMA的计算方法,合并线性回归率的计算。和通达信的结果一模一样

    using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...

  4. WeQuant交易策略—EMA指标

    策略名称:EMA指标策略关键词:指数移动平均.双均线.动态止损.方法:1)用快慢两条指数移动平均线的交叉作为买入卖出信号:2)快线自下而上穿过慢线,买入:自上而下穿过慢线,卖出:3)持仓期间计算净值的 ...

  5. 新概念英语(1-9)How is Ema?

    A:Hello Helen. B:Hi Steven. A:How are you today? B:I'm very well, thank you. And you? A:I'm fine tha ...

  6. tensorflow(3):神经网络优化(ema,regularization)

    1.指数滑动平均 (ema) 描述滑动平均: with tf.control_dependencies([train_step,ema_op]) 将计算滑动平均与 训练过程绑在一起运行 train_o ...

  7. 多种移动平均计算总结(MA,EMA,SMA,DMA,TMA,WMA)

    多种移动平均计算总结 股票期货里面经常会遇到这些公式,通达信,同花顺,文华,基本都有.作为一个程序员觉得网上比较的思路不清晰,在此做个总结,一目了然. 一.函数简介 MA(x,n)-移动平均,是最简单 ...

  8. 【优化技巧】指数移动平均EMA的原理

    前言 在深度学习中,经常会使用EMA(exponential moving average)方法对模型的参数做平滑或者平均,以求提高测试指标,增加模型鲁棒性. 参考 1. [优化技巧]指数移动平均(E ...

  9. EMA指数平滑移动平均

    英文参考:http://www.incrediblecharts.com/indicators/exponential_moving_average.php Exponential moving av ...

  10. EMA algorithm: https://blog.csdn.net/m0_38106113/article/details/81542863

    EMA algorithm: https://blog.csdn.net/m0_38106113/article/details/81542863

随机推荐

  1. 学习java 7.7

    学习内容: 多态转型:向上转型 Animal a = new Cat(); a.eat(); 向下转型 Cat c = (Cat)a; c.eat(); 抽象方法没有方法体,抽象类中有抽象方法 抽象类 ...

  2. 零基础学习java------day14-----泛型,foreach,可变参数,数组和集合间的转换,Set,Map,

    1.泛型(jdk1.5以后出现) https://www.cnblogs.com/lwbqqyumidi/p/3837629.html#!comments (1)为什么要用泛型? 限制集合,让它只能存 ...

  3. Ecshop 后台管理员密码忘记了吧~!~!~!

    方法1:把下面的代码保存为文件 mima.php <?php define('IN_ECS', true); require(dirname(__FILE__) . '/includes/ini ...

  4. 【leetcode】563. Binary Tree Tilt

    Given the root of a binary tree, return the sum of every tree node's tilt. The tilt of a tree node i ...

  5. Oracle—数据库名、数据库实例名、数据库域名、数据库服务名的区别

    Oracle-数据库名.数据库实例名.数据库域名.数据库服务名的区别 一.数据库名 1.什么是数据库名       数据库名就是一个数据库的标识,就像人的身份证号一样.他用参数DB_NAME表示,如果 ...

  6. Linux学习 - 文件系统常用命令

    一.文件系统查看命令df df [选项] [挂载点] -a 查看所有文件系统信息,包括特殊文件系统 -h 使用习惯单位显示容量 -T 显示文件系统类型 -m 以MB为单位显示容量 -k 以KB为单位显 ...

  7. SpringMVC原理分析

    Spring MVC主要包括以下要点: 1:由DispatcherServlet控制的整个流程: 2:注解驱动的控制器,其中包括请求映射.数据的绑定和格式化: 3:文件上传: 4:一些杂项,如静态资源 ...

  8. OC-代理,字符串

    总结 编号 标题 内容 一 protocol protocol 基本概念/语法格式/protocol和继承区别/使用注意/基协议/@required和@optional关键字/类型限制 二 代理设计模 ...

  9. go goroutines 使用小结

    go +方法 就实现了一个并发,但由于环境不同,需要对并发的个数进行限制,限制同一时刻并发的个数,后面称此为"并发限流". 为什么要并发限流? 虽然GO M+P+G的方式号称可以轻 ...

  10. Oracle存储过程游标for循环怎么写

    一.不带参数的游标for循环 首先编写存储过程的整体结构,如下: create or replace procedure test_proc is v_date date; --变量定义 begin ...