「Codeforces 79D」Password
Description
有一个 01 序列 \(a_1,a_2,\cdots,a_n\),初始时全为 \(0\)。
给定 \(m\) 个长度,分别为 \(l_1\sim l_m\)。
每次可以选择一个长度为某个 \(l_i\) 区间,对其进行翻转操作(\(0\to 1,1\to 0\))。
求最少的操作次数,使得最后有且仅有 \(k\) 个位置为 \(1\)(\(k\) 个位置给定),其余为 \(0\)。
\(1\leq n\leq 10^4,1\leq k\leq 10,1\leq m\leq 100\)。
Solution
原问题等价于:
给定 01 序列 \(a_1,a_2,\cdots,a_n\),有 \(k\) 个位置为 \(1\),其余为 \(0\)。每次可以翻转长度为 \(l_i\) 的区间,求将 \(a\) 清零的最小操作数。
操作为区间修改,考虑差分。
由于是“区间取反”,一般的作差差分无法使用,考虑 异或差分。令 \(b_i=a_i\text{ xor }a_{i+1}\)(设 \(a_0=a_{n+1}=0\))。
那么,将原序列中的区间 \([l,r]\) 翻转,等价于将差分序列中的 \(b_{l-1},b_r\) 取反(其他元素不变)。
Step1
考虑到 \(b\) 序列初始最多只有 \(2k\) 个 \(1\),则问题转化为:
给定 01 序列 \(b_0,b_2,\cdots,b_n\),最多有 \(2k\) 个位置为 \(1\)。每次可以选择一对距离为 \(l_i\) 的位置,将其取反。求将 \(b\) 清零的最小操作次数。
设选择的一对位置为 \((x,y)\)。分类讨论:
若 \(b_x=0,b_y=0\),则操作后 \(b_x=1,b_y=1\),增加 \(2\) 个 \(1\)。(显然会使答案更劣,不会发生)
若 \(b_x=1,b_y=1\),则操作后 \(b_x=0,b_y=0\),相当于 \(2\) 个 \(1\) 碰撞变成 \(0\),减少 \(2\) 个 \(1\)。
若 \(b_x=1,b_y=0\),则操作后 \(b_x=0,b_y=1\),相当于把 \(x\) 上的 \(1\) 移到 \(y\),\(1\) 的数量不变。
若 \(b_x=0,b_y=1\),与 \(b_x=1,b_y=0\) 同理,\(1\) 的数量不变。
Step2
问题等价于:(第 \(i\) 个节点有标记相当于 \(b_i=1\))
给定一个有 \(n+1\) 个节点的图(点的编号为 \(0\sim n\))。当 \(dis(x,y)=l_i\) 时,存在边 \((x,y)\)。初始时最多有 \(2k\) 个节点上有标记,每次可以沿边移动标记。两个标记相遇就会消失。求使所有标记消失的最少移动次数。
设标记点分别为 \(p_0,p_1,\cdots,p_{g-1}\)。
首先,我们可以通过 BFS 计算出所有标记点对之间的距离。
\(2k\leq 20\),考虑 状压 DP(差分序列中为 \(0\) 的位置不用管,只考虑 \(2k\) 个 \(1\),有 \(2^{2k}\) 种状态)。令 \(f_S\) 表示标记点状态为 \(S\) 时使所有标记消失的最少移动次数。
(\(S\) 二进制下的第 \(i\) 位为 \(1\) 表示标记点 \(p_i\) 上的标记未消失。显然转移只需考虑 \(2\) 个 \(1\) 碰撞变成 \(0\) 的情况,其他情况都是没有意义的,所以我们不需要考虑非初始标记点的状态)
转移:设 \(S\) 二进制下为 \(1\) 的其中两个位为 \(i,j\),\(f_{S}=\min\{f_{S-2^i-2^j}+dis(i,j)\}\)。
初始时 \(f_0=0,f_i=\infty\,(i\neq 0)\)。答案即为 \(f_{2^g-1}\)。
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=1e4+5,M=22;
int n,m,k,x,a[N],b[N],l[N],g,c[N],d[N],dis[M][M],f[1<<M],ans;
bool v[N];
queue<int>q;
void bfs(int s){ //BFS 计算出所有标记点对之间的距离
for(int i=0;i<=n;i++) d[i]=1e18,v[i]=0;
d[s]=0,v[s]=1,q.push(s);
while(q.size()){
int x=q.front(),y;q.pop();
for(int i=1;i<=m;i++){
if((y=x+l[i])<=n&&!v[y]) d[y]=d[x]+1,v[y]=1,q.push(y);
if((y=x-l[i])>=0&&!v[y]) d[y]=d[x]+1,v[y]=1,q.push(y);
}
}
for(int i=0;i<=n;i++)
if(b[i]) dis[c[s]][c[i]]=d[i];
}
signed main(){
scanf("%lld%lld%lld",&n,&k,&m);
for(int i=1;i<=k;i++)
scanf("%lld",&x),a[x]=1;
for(int i=1;i<=m;i++)
scanf("%lld",&l[i]);
for(int i=0;i<=n;i++)
b[i]=a[i]^a[i+1],c[i]=(b[i]?g++:0); //b 为差分序列。若节点 i 是标号点,也就是 b[i]=1,则节点 i 对应的标记点编号为 c[i](编号从 0 开始)
for(int i=0;i<=n;i++)
if(b[i]) bfs(i); //注意这里是 if(b[i]) 而不是 if(c[i]),因为标记点的编号是从 0 开始的
for(int s=1;s<(1<<g);s++){ //状压 DP
f[s]=1e18;
for(int i=0;i<g;i++){
if(!((s>>i)&1)) continue;
for(int j=i+1;j<g;j++) //枚举 S 二进制下为 1 的两个位为 i,j
if((s>>j)&1) f[s]=min(f[s],f[s-(1<<i)-(1<<j)]+dis[i][j]);
}
}
ans=f[(1<<g)-1],printf("%lld\n",ans==1e18?-1:ans);
return 0;
}
「Codeforces 79D」Password的更多相关文章
- 「CodeForces 581D」Three Logos
BUPT 2017 Summer Training (for 16) #3A 题意 给你三个矩形,需要不重叠不留空地组成一个正方形.不存在输出-1,否则输出边长和这个正方形(A,B,C表示三个不同矩形 ...
- 「CodeForces - 50C 」Happy Farm 5 (几何)
BUPT 2017 summer training (16) #2B 题意 有一些二维直角坐标系上的整数坐标的点,找出严格包含这些点的只能八个方向走出来步数最少的路径,输出最少步数. 题解 这题要求严 ...
- 「CodeForces - 598B」Queries on a String
BUPT 2017 summer training (for 16) #1I 题意 字符串s(1 ≤ |s| ≤ 10 000),有m(1 ≤ m ≤ 300)次操作,每次给l,r,k,代表将r位置插 ...
- 「CodeForces - 717E」Paint it really, really dark gray (dfs)
BUPT 2017 summer training (for 16) #1H 题意 每个节点是黑色or白色,经过一个节点就会改变它的颜色,一开始在1节点.求一条路径使得所有点变成黑色. 题解 dfs时 ...
- 「CodeForces 476A」Dreamoon and Stairs
Dreamoon and Stairs 题意翻译 题面 DM小朋友想要上一个有 \(n\) 级台阶的楼梯.他每一步可以上 \(1\) 或 \(2\) 级台阶.假设他走上这个台阶一共用了 \(x\) 步 ...
- 「CodeForces 546B」Soldier and Badges 解题报告
CF546B Soldier and Badges 题意翻译 给 n 个数,每次操作可以将一个数 +1,要使这 n 个数都不相同, 求最少要加多少? \(1 \le n \le 3000\) 感谢@凉 ...
- CodeForces 79D 【Password】,洛谷P3943 【星空】
其实我做的是洛谷的P3943,但是听说fstqwq窃题...... 题目描述: 小 C 拿来了一长串星型小灯泡,假装是星星,递给小 F,想让小 F 开心一点.不过,有 着强迫症的小 F 发现,这串一共 ...
- 「Codeforces 468C」Hack it!
Description 定义 \(f(x)\) 表示 \(x\) 的各个数位之和.现在要求 \(\sum_{i=l}^rf(i)\bmod a\). 显然 ans=solve(l,r)%a; if(a ...
- 「Codeforces 724F」Uniformly Branched Trees
题目大意 如果两棵树可以通过重标号后变为完全相同,那么它们就是同构的. 将中间节点定义为度数大于 \(1\) 的节点.计算由 \(n\) 个节点,其中所有的中间节点度数都为 \(d\) 的互不同构的树 ...
随机推荐
- Azure Key Vault(二)- 入门简介
一,引言 在介绍 Azure Key Vault 之前,先简单介绍一下 HSM(硬件安全模块). -------------------- 我是分割线 -------------------- 1,什 ...
- 学习java 6.30
学习内容:Java的运算符与C中类似,虽是类似,还是有点区别,在这里详细说明一下,即字符以及字符串的+操作,字符的+操作执行后需要赋值给表达式中数据范围最大的类型, 字符串的+操作,当+中有字符串,则 ...
- flink-----实时项目---day06-------1. 获取窗口迟到的数据 2.双流join(inner join和left join(有点小问题)) 3 订单Join案例(订单数据接入到kafka,订单数据的join实现,订单数据和迟到数据join的实现)
1. 获取窗口迟到的数据 主要流程就是给迟到的数据打上标签,然后使用相应窗口流的实例调用sideOutputLateData(lateDataTag),从而获得窗口迟到的数据,进而进行相关的计算,具体 ...
- 初学js正则表达式之密码强度验证
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 【php安全】 register_argc_argv 造成的漏洞分析
对register_argc_argv的分析 简介 使用 cli模式下,不论是否开始register_argc_argv,都可以获取命令行或者说外部参数 web模式下,只有开启了register_ar ...
- HDFS初探之旅(二)
6.HDFS API详解 Hadoop中关于文件操作类疾病上全部在"org.apache.hadoop.fs"包中,这些API能够支持的操作包含:打开文件.读写文件.删除文件等. ...
- minSdkVersion、targetSdkVersion、targetApiLevel的区别
在AndroidMenifest.xml中,常常会有下面的语句: <uses-sdk android:minSdkVersion="4" android:targetSdk ...
- Advanced C++ | Conversion Operators
In C++, the programmer abstracts real world objects using classes as concrete types. Sometimes it is ...
- 通过 Ajax 发送 PUT、DELETE 请求的两种实现方式
一.普通请求方法发送 PUT 请求 1. 如果不用 ajax 发送 PUT,我们可以通过设置一个隐藏域设置 _method 的值,如下: <form action="/emps&quo ...
- SP16033 TIPTOP - Tip Top Game 题解
Description Alim 和 Sufian 是好朋友.他们最近找到了一个好玩的游戏,叫做 Tip Top.游戏规则如下: 确定一个整数. 找出这个整数的所有因子. Alim 先手,每人轮流取一 ...