题面传送门

题意:

桌子上有 \(1\) 个珠子,你要进行 \(n-1\) 次操作,每次操作有以下两种类型:

  1. 拿出一个新珠子,并选择一个桌子上的珠子,在它们之间连一条红线
  2. 选择两个由红线相连的珠子 \(u,v\),并拿出一个新珠子 \(w\),将原来连接 \(u,v\) 的红线断开,并在 \(u,w\) 和 \(v,w\) 之间各连一条蓝线。

显然最后 \(n\) 个珠子会形成一棵由 \(n-1\) 条线的树,给出最终每条线的长度,但你不知道它们的颜色。

你的得分为所有蓝线长度之和,求在所有可能的情况下,你得分的最大值。

\(n \in [2,2\times 10^5]\)

考虑蓝线的性质。由于连成的蓝线就没办法再被断开了,故蓝线连接的三个节点 \(u,w,v\) 在最终的树上也是相邻的。

故原题可以转化为:你可以选择一条三个节点 \(u\to v\to w\) 的链满足边 \((u,v),(v,w)\) 都没被选择,要求选出的边的权值之和的最大值。

树上相邻的三个节点有两种可能,一是爷爷->父亲->儿子,二是儿子->父亲->兄弟。

第二种情况比较复杂。不过我们可以枚举最开始的珠子在最终的树上的编号是多少,也就是钦定一个根节点,这样就不会出现第二种情况(很好理解,如果出现儿子->父亲->兄弟的情况,那我们肯定是先连好儿子->兄弟的边,再插入父亲节点,而由于父亲节点与根节点相连,所以应当是父亲节点先连好才对,所以这种情况不可能出现)

然后就可以 \(dp\) 了。\(dp_{u,0}\) 选好了 \(u\) 的子树中的边,\(u\) 不是某条蓝链的中点的最大权值和。\(dp_{u,1}\) 表示 \(u\) 是某条蓝链的中点的最大权值和。

考虑转移,\(dp_{u,0}\) 比较简单,枚举它的每个儿子 \(v\),有两种情况,要么 \((u,v)\) 间连了条红线,也就是 \(dp_{v,0}\),要么 \((u,v)\) 间连了条蓝线,而由于 \(u\) 不是某条蓝链的中点,所以这条链的连法只可能是 \(u\to v\to v\) 的某个儿子,也就是 \(dp_{v,1}+w\),故 \(dp_{u,0}=\sum\limits_{v\in son_u}\max(dp_{v,0},dp_{v,1}+w)\)

再考虑 \(dp_{u,1}\),显然 \(dp_{u,1}\) 是在 \(dp_{u,1}\) 是在 \(dp_{u,0}\) 的基础上将 \(u\) 与某个儿子 \(v\) 节点之间的边换成蓝边,考虑这一类树形 \(dp\) 的常用套路,枚举这个儿子 \(v\),计算将 \((u,v)\) 之间的边改为蓝边造成的 \(\Delta=dp_{v,0}+w-\max(dp_{v,0},dp_{v,1}+w)\),然后取个 \(\max\) 即可,故 \(dp_{u,1}=dp_{u,0}+\max\limits_{v\in son_u}dp_{v,0}+w-\max(dp_{v,0},dp_{v,1}+w)\)

然后考虑换根,记 \(f_{u}\) 表示以 \(u\) 为根节点的答案,\(out_{i,0/1}\) 表示 \(i\) 子树外的 \(dp\) 值,加法是可逆的,至于 \(\max\), multiset 维护一下即可。这一部分比较套路,具体见代码。

时间复杂度 \(\mathcal O(n\log n)\)

#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define ffe(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
typedef pair<int,int> pii;
typedef long long ll;
const int MAXN=2e5+5;
int n,to[MAXN<<1],nxt[MAXN<<1],hd[MAXN],cst[MAXN<<1],ec=0;
void adde(int u,int v,int w){
to[++ec]=v;nxt[ec]=hd[u];cst[ec]=w;hd[u]=ec;
}
int dp[MAXN][2],f[MAXN],out[MAXN][2];
void dfs(int x,int fa){
dp[x][1]=-2e9;
for(int e=hd[x];e;e=nxt[e]){
int y=to[e],z=cst[e];if(y==fa) continue;dfs(y,x);
dp[x][0]+=max(dp[y][0],dp[y][1]+z);
dp[x][1]=max(dp[x][1],dp[y][0]+z-max(dp[y][0],dp[y][1]+z));
} dp[x][1]+=dp[x][0];
}
void cgrt(int x,int fa){
int sum=0;
multiset<int> st;st.insert(-2e9);
for(int e=hd[x];e;e=nxt[e]){
int y=to[e],z=cst[e];
if(y==fa){
sum+=max(out[x][0],out[x][1]+z);
st.insert(out[x][0]+z-max(out[x][0],out[x][1]+z));
} else {
sum+=max(dp[y][0],dp[y][1]+z);
st.insert(dp[y][0]+z-max(dp[y][0],dp[y][1]+z));
}
}
for(int e=hd[x];e;e=nxt[e]){
int y=to[e],z=cst[e];if(y==fa) continue;
out[y][0]=sum-max(dp[y][0],dp[y][1]+z);
st.erase(st.find(dp[y][0]+z-max(dp[y][0],dp[y][1]+z)));
out[y][1]=out[y][0]+(*st.rbegin());
st.insert(dp[y][0]+z-max(dp[y][0],dp[y][1]+z));
f[y]=dp[y][0]+max(out[y][0],out[y][1]+z);
cgrt(y,x);
}
}
int main(){
scanf("%d",&n);
for(int i=1;i<n;i++){
int u,v,w;scanf("%d%d%d",&u,&v,&w);
adde(u,v,w);adde(v,u,w);
} dfs(1,0);f[1]=dp[1][0];cgrt(1,0);int ans=0;
for(int i=1;i<=n;i++) ans=max(ans,f[i]);
printf("%d\n",ans);
return 0;
}

洛谷 P3647 [APIO2014]连珠线(换根 dp)的更多相关文章

  1. 洛谷$P3647\ [APIO2014]$连珠线 换根$dp$

    正解:换根$dp$ 解题报告: 传送门! 谁能想到$9102$年了$gql$居然还没写过换根$dp$呢,,,$/kel$ 考虑固定了从哪个点开始之后,以这个点作为根,蓝线只可能是直上直下的,形如&qu ...

  2. 【BZOJ3677】[Apio2014]连珠线 换根DP

    [BZOJ3677][Apio2014]连珠线 Description 在列奥纳多·达·芬奇时期,有一个流行的童年游戏,叫做“连珠线”.不出所料,玩这个游戏只需要珠子和线,珠子从1到礼编号,线分为红色 ...

  3. [换根DP]luogu P3647 [APIO2014]连珠线

    题面 https://www.luogu.com.cn/problem/P3647 不重复地取树中相邻的两条边,每次得分为两条边权和,问最大得分 分析 容易想到状态 f[i][0/1] 分别表示 i ...

  4. Luogu P3647 [APIO2014]连珠线

    题目 换根dp. 显然对于给定的一棵有根树,蓝线都不能拐弯. 设\(f_{u,0}\)表示\(u\)不是蓝线中点时子树内的答案,\(f_{u,1}\)表示\(u\)是蓝线中点时子树内的答案.(以\(1 ...

  5. 并不对劲的bzoj3677:p3647:[APIO2014]连珠线

    题目大意 有一种生成\(n\)个点的树的方法为: 一开始有一个点,\(n-1\)次操作,每次可以有两种操作:1.选一个点,用一条红边将它与新点连接:2.将新点放在一条红边上,新点与这条红边两端点直接的 ...

  6. 【LG3647】[APIO2014]连珠线

    [LG3647][APIO2014]连珠线 题面 洛谷 题解 首先考虑一下蓝线连起来的情况,一定是儿子-父亲-另一个儿子或者是儿子-父亲-父亲的父亲. 而因为一开始只有一个点在当前局面上,将一条红边变 ...

  7. BZOJ 3677 连珠线

    Description 在达芬奇时代,有一个流行的儿童游戏称为连珠线.当然,这个游戏是关于珠子和线的.线是红色或蓝色的,珠子被编号为\(1\)到\(n\).这个游戏从一个珠子开始,每次会用如下方式添加 ...

  8. [Bzoj3677][Apio2014]连珠线(树形dp)

    3677: [Apio2014]连珠线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 434  Solved: 270[Submit][Status] ...

  9. 题解 [APIO2014]连珠线

    题解 [APIO2014]连珠线 题面 解析 首先这连成的是一棵树啊. 并且\(yy\)一下,如果钦定一个根, 那么这上面的蓝线都是爸爸->儿子->孙子这样的,因为像下图这样的构造不出来: ...

随机推荐

  1. 虚拟机研究系列-「GC本质底层机制」SafePoint的深入分析和底层原理探究指南

    SafePoint前提介绍 在高度优化的现代JVM里,Safepoint有几种不同的用法.GC safepoint是最常见.大家听说得最多的,但还有deoptimization safepoint也很 ...

  2. shopping cart

    #Author:Kevin_hou #定义产品列表 product_list =[ ('HUAWEI',5999), ('Watch',500), ('Nike',800), ('Toyota',20 ...

  3. TStor-OneCOS ,主打专一海量对象场景

    ​谁能与你厮守终身 生活在21世纪,最常见的事莫过于更新换代了,找一款能长久适用的产品,是很多人都希望拥有的,特别是针对于云服务产品,而对象·混合云存储新增 TStor-OneCOS 就是这样一款可以 ...

  4. Flink Yarn的2种任务提交方式

    Flink Yarn的2种任务提交方式 Pre-Job模式介绍 每次使用flink run运行任务的时候,Yarn都会重新申请Flink集群资源(JobManager和TaskManager),任务执 ...

  5. 在Excel中,不利用任何第三方工具,生成二维码

    有同事提需求,要批量生成二维码.谈了之后,我觉得可以做个excel文件,把要打印的内容放进去,然后给每行数据生成一个二维码.下一步就要在Excel里面生成二维码.问了一下度娘,貌似都得利用一些第三方工 ...

  6. CSDN app分析

    项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) (北京航空航天大学 - 计算机学院) 这个作业的要求在哪里 个人博客作业-软件案例分析 我的教学班级 005 说说csd ...

  7. Maven还停留在导jar包?快来探索Nexus私服的新世界

    写在前面 Maven,学习框架之前我们都会接触到的一个工具,感觉他的定位,似乎就跟git一样,只是方便我们开发?于是自然而然的,很多小猿对于Maven都只是停留在会用的阶段,利用他来构建,打包,引入j ...

  8. Codeforces Round #736 (Div. 2)

    A,B,C就不说了,又被D题卡住了..... 感觉怎么说呢,就是题解中的三个提示都已经想到了,就是不知道该怎么解决.... D. Integers Have Friends 简述题意:题目要求你找一个 ...

  9. Spring Cloud Alibaba 使用Feign进行服务消费

    为什么使用Feign? Feign可以把Rest的请求进行隐藏,伪装成类似SpringMVC的Controller一样.你不用再自己拼接url,拼接参数等等操作,一切都交给Feign去做. 使用Fei ...

  10. [转]技术往事:改变世界的TCP/IP协议

    原文链接 : http://www.52im.net/thread-520-1-1.html 1.前言 作为应用层开发人员,接触最多的网络协议通常都是传输层的TCP(与之同处一层的另一个重要协议是UD ...