洛谷 P4755 - Beautiful Pair(主席树+分治+启发式优化)
wssb,我紫菜
看到这类与最大值统计有关的问题可以很自然地想到分治,考虑对 \([l,r]\) 进行分治,求出对于所有 \(l\le x\le y\le r\) 的点对 \((x,y)\) 的贡献之和。若 \(l=r\) 那只有 \(a_l=1\) 的情况会产生贡献,特判一下并直接返回即可。若 \(l\ne r\),我们假设 \([l,r]\) 中最大值的位置为 \(mid\),考虑将所有符合要求的点对分成三部分,一是 \(l\le x\le y<mid\),二是 \(mid<x\le y\le r\),三是 \(l\le x\le mid\le y\le r\),对于前两种情况,分别对区间 \([l,mid-1],[mid+1,r]\) 进行分治即可,对于第三种情况,显然 \([x,y]\) 中最大值就是 \(a_{mid}\),考虑枚举 \(x\in[l,mid]\),那么显然只有 \(a_y\le\dfrac{a_{mid}}{a_x},y\in[mid,r]\) 的 \(y\) 才可能产生贡献,这相当于一个静态区间求值域在某个区间范围内数的个数,可用离散化+主席树解决。这样做可能会被极端数据卡到 \(n^2\log n\),不过考虑加一个优化,那就是如果区间 \([l,mid]\) 长度 \(<[mid+1,r]\) 的长度,就枚举 \(x\in[l,mid]\),否则枚举 \(y\in[mid,r]\),这样时间复杂度为 \(T(n)=\max\limits_{t=0}^nT(t)+T(n-t)+\min(t,n-t)\log n\),打个表可知 \(T(n)=n\log^2n\),可通过此题。
感觉这题从哪方面说都不难啊,为啥我想不到呢?大概是我做题太少了没遇到过类似的套路罢……
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
typedef unsigned int u32;
typedef unsigned long long u64;
namespace fastio{
#define FILE_SIZE 1<<23
char rbuf[FILE_SIZE],*p1=rbuf,*p2=rbuf,wbuf[FILE_SIZE],*p3=wbuf;
inline char getc(){return p1==p2&&(p2=(p1=rbuf)+fread(rbuf,1,FILE_SIZE,stdin),p1==p2)?-1:*p1++;}
inline void putc(char x){(*p3++=x);}
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=0;
while(!isdigit(c)) neg|=!(c^'-'),c=getchar();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
if(neg) x=(~x)+1;
}
template<typename T> void recursive_print(T x){if(!x) return;recursive_print(x/10);putc(x%10^48);}
template<typename T> void print(T x){if(!x) putc('0');if(x<0) putc('-'),x=~x+1;recursive_print(x);}
void print_final(){fwrite(wbuf,1,p3-wbuf,stdout);}
}
const int MAXN=1e5;
const int LOG_N=17;
int n,a[MAXN+5],key[MAXN+5],uni[MAXN+5],num=0;
struct node{int ch[2],val;} s[MAXN*40+5];
int rt[MAXN+5],ncnt=0;
void build(int &k,int l,int r){
k=++ncnt;if(l==r) return;int mid=l+r>>1;
build(s[k].ch[0],l,mid);build(s[k].ch[1],mid+1,r);
}
int modify(int k,int l,int r,int p,int x){
int id=++ncnt;s[id]=s[k];s[id].val+=x;
if(l==r) return id;int mid=l+r>>1;
if(p<=mid) s[id].ch[0]=modify(s[k].ch[0],l,mid,p,x);
else s[id].ch[1]=modify(s[k].ch[1],mid+1,r,p,x);
return id;
}
int query(int k,int l,int r,int ql,int qr){
if(ql<=l&&r<=qr) return s[k].val;int mid=l+r>>1;
if(qr<=mid) return query(s[k].ch[0],l,mid,ql,qr);
else if(ql>mid) return query(s[k].ch[1],mid+1,r,ql,qr);
else return query(s[k].ch[0],l,mid,ql,mid)+query(s[k].ch[1],mid+1,r,mid+1,qr);
}
pii st[MAXN+5][LOG_N+2];
pii getpos(int l,int r){
int k=31-__builtin_clz(r-l+1);
return max(st[l][k],st[r-(1<<k)+1][k]);
}
ll ans=0;
void solve(int l,int r){
if(l>r) return;if(l==r){ans+=(uni[a[l]]==1);return;}
int mid=getpos(l,r).se;solve(l,mid-1);solve(mid+1,r);
if(mid-l<=r-mid){
for(int i=l;i<=mid;i++){
int val=uni[a[mid]]/uni[a[i]];
val=upper_bound(uni+1,uni+num+1,val)-uni-1;
if(val) ans+=query(rt[r],1,num,1,val)-query(rt[mid-1],1,num,1,val);
}
} else {
for(int i=mid;i<=r;i++){
int val=uni[a[mid]]/uni[a[i]];
val=upper_bound(uni+1,uni+num+1,val)-uni-1;
if(val) ans+=query(rt[mid],1,num,1,val)-query(rt[l-1],1,num,1,val);
}
}
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]),key[i]=a[i];
sort(key+1,key+n+1);
for(int i=1;i<=n;i++) if(key[i]^key[i-1]) uni[++num]=key[i];
for(int i=1;i<=n;i++) a[i]=lower_bound(uni+1,uni+num+1,a[i])-uni;
build(rt[0],1,num);
for(int i=1;i<=n;i++) rt[i]=modify(rt[i-1],1,num,a[i],1);
for(int i=1;i<=n;i++) st[i][0]=mp(a[i],i);
for(int i=1;i<=LOG_N;i++) for(int j=1;j+(1<<i)-1<=n;j++)
st[j][i]=max(st[j][i-1],st[j+(1<<i-1)][i-1]);
solve(1,n);printf("%lld\n",ans);
return 0;
}
洛谷 P4755 - Beautiful Pair(主席树+分治+启发式优化)的更多相关文章
- 洛谷$P4755\ Beautiful\ Pair$ 最大值分治
正解:最大值分治 解题报告: 传送门$QwQ$ 昂考虑如果已经钦定了点$x$是这个$max$了,然后现在要求有多少对$[l,r]$满足$a_x=max\left\{a_i\right\},i\in[l ...
- 点分治模板(洛谷P4178 Tree)(树分治,树的重心,容斥原理)
推荐YCB的总结 推荐你谷ysn等巨佬的详细题解 大致流程-- dfs求出当前树的重心 对当前树内经过重心的路径统计答案(一条路径由两条由重心到其它点的子路径合并而成) 容斥减去不合法情况(两条子路径 ...
- 洛谷P2617 Dynamic Rankings (主席树)
洛谷P2617 Dynamic Rankings 题目描述 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a ...
- 洛谷P3567 KUR-Couriers [POI2014] 主席树/莫队
正解:主席树/莫队 解题报告: 传送门! 这题好像就是个主席树板子题的样子,,,? 毕竟,主席树的最基本的功能就是,维护一段区间内某个数字的个数 但是毕竟是刚get到主席树,然后之前做的一直是第k大, ...
- 洛谷P3567[POI2014]KUR-Couriers(主席树+二分)
题意:给一个数列,每次询问一个区间内有没有一个数出现次数超过一半 题解: 最近比赛太多,都没时间切水题了,刚好日推了道主席树裸题,就写了一下 然后 WA80 WA80 WA0 WA90 WA80 ?? ...
- 洛谷P3567 [POI2014]KUR-Couriers 主席树
挺裸的,没啥可讲的. 不带修改的主席树裸题 Code: #include<cstdio> #include<algorithm> using namespace std; co ...
- 洛谷$P3302$ 森林 $[SDOI2013]$ 主席树
正解:主席树 解题报告: 传送门! 口胡一时爽代码火葬场 这题想法不难,,,但显然的是代码应该还挺难打的 但反正我也不放代码,就写下题解趴$QwQ$ 第一问就是个$Count\ on\ a\ tree ...
- 洛谷4755 Beautiful Pair (分治)
题目描述 小D有个数列 \(a\),当一个数对 \((i,j)(i\le j)\) 满足\(a_i\)和\(a_j\)的积 不大于 \(a_i \cdots a_j\) 中的最大值时,小D认为这个数对 ...
- 洛谷P4602 [CTSC2018]混合果汁(主席树)
题目描述 小 R 热衷于做黑暗料理,尤其是混合果汁. 商店里有 nn 种果汁,编号为 0,1,\cdots,n-10,1,⋯,n−1 . ii 号果汁的美味度是 d_idi ,每升价格为 p_ipi ...
随机推荐
- sql常用的统计公式
hivesql中max,min函数不能作用于多列,因此在有上下门限区间限制时多用公式直接计算. max(x,y)=(x+y+ABS(x-y))/2 min(x,y)=(x+y-ABS(x-y))/2 ...
- 【Java虚拟机6】Java内存模型(Java篇)
什么是Java内存模型 <Java虚拟机规范>中曾试图定义一种"Java内存模型"(Java Memory Model,JMM)来屏蔽各种硬件和操作系统的内存访问差异, ...
- Django Model字段加密的优雅实现
早前的一篇文章Django开发密码管理表实例有写我们写了个密码管理工具来实现对密码的管理,当时加密解密的功能在view层实现,一直运行稳定所以也没有过多关注实现是否优雅的问题.最近要多加几个密码表再次 ...
- 【UE4】虚幻引擎技术直播汇总(含中英文直播)
B站虚幻引擎官方账号 中文直播 [中文直播]第35期 | 使用GIS在UE中创造真实地球风貌 | Epic 周澄清 [中文直播]第34期 | 包教包会的Epic MegaGrants申请之道 | Ep ...
- Spring Cloud Gateway + Jwt + Oauth2 实现网关的鉴权操作
Spring Cloud Gateway + Jwt + Oauth2 实现网关的鉴权操作 一.背景 二.需求 三.前置条件 四.项目结构 五.网关层代码的编写 1.引入jar包 2.自定义授权管理器 ...
- 攻防世界 web1.view_source
右键不管用,F12打开控制台,直接查看flag.
- MyBatis源码分析(四):SQL执行过程分析
一.获取Mapper接口的代理 根据上一节,Mybatis初始化之后,利用sqlSession(defaultSqlSession)的getMapper方法获取Mapper接口 1 @Override ...
- Django(71)图片处理器django-imagekit
介绍 ImageKit是用于处理图像的Django应用程序.如果需要从原图上生成一个长宽为50x50的图像,则需要ImageKit. ImageKit附带了一系列图像处理器,用于调整大小和裁剪等常见任 ...
- VulnHub-[DC-8-9]-系列通关手册
DC8-通关手册 DC-8是另一个专门构建的易受攻击的实验室,目的是在渗透测试领域积累经验. 这个挑战有点复杂,既是实际挑战,又是关于在Linux上安装和配置的两因素身份验证是否可以阻止Linux服务 ...
- 力扣 - 剑指 Offer 06. 从尾到头打印链表.md
题目 剑指 Offer 06. 从尾到头打印链表 思路1(递归) 首先先遍历整个脸表,计算出链表的长度(用于初始化数组).然后进行递归,从链表头部递归到尾部,这期间什么都不做,直到递归到最后一个节点的 ...