HDU 6036 Division Game

考虑每堆石头最多操作 $ \sum e $ 次,考虑设 $ f(x) $ 表示某一堆石头(最开始都是一样的)操作 $ x $ 次后变成了 $ 1 $ 的方案数量。

明显的,某一堆石头操作了 $ x $ 次后仍然没有变成 $ 1 $ 的方案数量是 $ f(x+1) $。因为最后一次操作必然是把石头从某个数字拿到1。(这个算个小trick吧?)

那么对于第 \(k\) 堆石头答案就是 $ f^{k-1}(x+1) f^{m-i+1}(x) $

因为前 $ k - 1 $ 堆石头进行了 $ x $ 次拿石头的操作还没变成 $ 1 $,而从 $ k $ 后面所有的石头都进行 $ x - 1 $ 次操作并且没变成 $ 1 $ ,而第 $ k $ 堆石头是变成了 $ 1 $ 的。

然后考虑怎么计算 $ f(x) $

相当于我们有 $ m $ 种球每种 $ e_i $ 个放进 $ x $ 个不同的盒子里面,并且最后不能有盒子是空的

如果可以有盒子是空的,这个会比较好算,对每种球分开考虑,并且分别用插板法,最后乘法原理答案是 $ f'(x)=\displaystyle \prod_{i=1}^m\binom{e_i+x-1}{x-1} $

但是这个还不是答案,因为可以为空,不能为空可以考虑容斥,总方案数减去至少一个为空加上至少两个为空... 容斥系数是 $ (-1)^{t} $ 其中 $ t $ 代表至少有 $ t $ 个位置是空的。

$ f(x) = \displaystyle\sum_{i=0}^x (-1)^{x-i}f'(i)\binom{x}{i} $

$ f'(x) $ 化一下发现很容易求所以 $ f(x) $ 就可以NTT辣

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#define ll long long
using namespace std;
#define P 985661441
#define MAXN (1 << 19) + 13
int m , k;
int a[MAXN];
int Pow(int x,int y) {
int res=1;
while(y) {
if(y&1) res=res*(ll)x%P;
x=x*(ll)x%P,y>>=1;
}
return res;
}
int wn[2][MAXN];
void getwn(int l) {
for(int i=1;i<(1<<l);i<<=1) {
int w0=Pow(3,(P-1)/(i<<1)),w1=Pow(3,P-1-(P-1)/(i<<1));
wn[0][i]=wn[1][i]=1;
for(int j=1;j<i;++j)
wn[0][i+j]=wn[0][i+j-1]*(ll)w0%P,
wn[1][i+j]=wn[1][i+j-1]*(ll)w1%P;
}
}
int rev[MAXN];
void getr(int l) { for(int i=1;i<(1<<l);++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<l-1); }
void NTT(int *A,int len,int f) {
for(int i=0;i<len;++i) if(rev[i]<i) swap(A[i],A[rev[i]]);
for(int l=1;l<len;l<<=1)
for(int i=0;i<len;i+=(l<<1))
for(int k=0;k<l;++k) {
int t1=A[i+k],t2=A[i+l+k]*(ll)wn[f][l+k]%P;
A[i+k]=(t1+t2)%P;
A[i+l+k]=(t1-t2+P)%P;
}
if( f == 1 ) for(int inv=Pow(len,P-2),i=0;i<len;++i) A[i]=A[i]*(ll)inv%P;
}
int J[MAXN] , invJ[MAXN] , p[MAXN];
int kase = 0;
int pp[20] , E[20] , F[MAXN] , n;
signed main() {
J[0] = invJ[0] = 1;
for( int i = 1 ; i < MAXN ; ++ i )
J[i] = 1ll * J[i - 1] * i % P , invJ[i] = Pow( J[i] , P - 2 );
while( cin >> m >> k ) {
memset( p , 0 , sizeof p ) , memset( F , 0 , sizeof F );
n = 1;
for( int i = 1 ; i <= m ; ++ i ) {
scanf("%d%d",&pp[i],&E[i]);
n += E[i];
}
p[0] = 1;
for( int i = 1 ; i <= n ; ++ i ) {
F[i] = invJ[i] , p[i] = ( ( ( i & 1 ) ? -1 : 1 ) * invJ[i] + P ) % P;
for( int j = 1 ; j <= m ; ++ j )
F[i] = 1ll * F[i] * J[E[j] + i - 1] % P * invJ[i - 1] % P * invJ[E[j]] % P;
}
// cout << F[2] << endl;
int len = 1 , l = 0;
while( len <= n * 2 ) len <<= 1 , ++ l;
getr( l ) , getwn( l );
NTT( F , len , 0 ) , NTT( p , len , 0 );
for( int i = 0 ; i < len ; ++ i ) F[i] = 1ll * F[i] * p[i] % P;
NTT( F , len , 1 );
for( int i = 0 ; i < len ; ++ i ) F[i] = 1ll * F[i] * J[i] % P;
// cout << F[2] << endl;
printf("Case #%d: ",++kase);
for( int i = 1 ; i <= k ; ++ i ) {
int res = 0;
for( int x = 0 ; x < n ; ++ x )
res = ( res + 1ll * Pow( F[x + 1] , i - 1 ) * Pow( F[x] , k - i + 1 ) % P ) % P ;
printf("%d",res);
if( i != k ) putchar(' ');
}
puts("");
}
}

HDU 6036 Division Game的更多相关文章

  1. HDU 6036 - Division Game | 2017 Multi-University Training Contest 1

    /* HDU 6036 - Division Game [ 组合数学,NTT ] | 2017 Multi-University Training Contest 1 题意: k堆石子围成一个圈,数量 ...

  2. hdu 3480 Division(斜率优化DP)

    题目链接:hdu 3480 Division 题意: 给你一个有n个数的集合S,现在让你选出m个子集合,使这m个子集合并起来为S,并且每个集合的(max-min)2 之和要最小. 题解: 运用贪心的思 ...

  3. 【HDU 6036】Division Game (NTT+数学)

    多校1 1004 HDU-6036 Division Game 题意 有k堆石头(0~k-1),每堆n个.\(n=\prod_{i=0}^{m}p_i^{e_i}\).\(0\le m,k \le 1 ...

  4. HDU 3480 Division(斜率优化+二维DP)

    Division Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 999999/400000 K (Java/Others) Tota ...

  5. HDU 3480 - Division - [斜率DP]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3480 Time Limit: 10000/5000 MS (Java/Others) Memory L ...

  6. HDU 3480 Division(斜率DP裸题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3480 题目大意:将n个数字分成m段,每段价值为(该段最大值-该段最小值)^2,求最小的总价值. 解题思 ...

  7. hdu 2615 Division(暴力)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2615 题解:挺简单的暴力枚举,小小的分治主要是看没人写题解就稍微写一下 #include <io ...

  8. HDU 3480 division

    题目大意:一个有n个数的集合,现在要求将他分成m+1个子集,对子集i设si表示该集合中最大数与最小数的差的平方.求所有si的和的最小值.n<=10000,m<=5000. 分析:最优解的m ...

  9. hdu 3480 Division(四边形不等式优化)

    Problem Description Little D is really interested in the theorem of sets recently. There’s a problem ...

随机推荐

  1. Java泛型背后是什么?

    文Java中泛型的应用,让大家更好地理解泛型,以及常说的泛型类型擦除是什么概念,举一个简单的例子,如下: 这里可以看出来在代码编写阶段就已经报错了,不能往string类型的集合中添加int类型的数据. ...

  2. FastAPI 学习之路(四十二)定制返回Response

    我们想要在接口中返回xml格式的内容,我们应该如何实现呢. from fastapi import FastAPI,Response @app.get("/legacy/") de ...

  3. Unity 3D手游对不同分辨率屏幕的UI自适应

    目前安卓手机的屏幕大小各异,没有统一的标准,因此用Unity 3D制作的手游需要做好对不同分辨率屏幕的UI自适应,否则就会出现UI大小不一和位置错位等问题. 我们的项目在开发时的参照分辨率(Refer ...

  4. 在Vue前端项目中,附件展示的自定义组件开发

    在Vue前端界面中,自定义组件很重要,也很方便,我们一般是把一些通用的界面模块进行拆分,创建自己的自定义组件,这样操作可以大大降低页面的代码量,以及提高功能模块的开发效率,本篇随笔继续介绍在Vue&a ...

  5. [火星补锅] 水题大战Vol.2 T1 && luogu P1904 天际线 题解 (线段树)

    前言: 当时考场上并没有想出来...后来也是看了题解才明白 解析: 大家(除了我)都知道,奇点和偶点会成对出现,而出现的前提就是建筑的高度突然发生变化.(这个性质挺重要的,我之前没看出来) 所以就可以 ...

  6. [调试笔记] 10.8模拟赛11 T4 甜圈

    这题正解线段树维护哈希,同机房神犇已经讲的很明白了.这里只说sbwzx在调试的时候犯的sb错误. 1.关于pushdown和update 众所周知,sbwzx一写带lazy的线段树,就必在pushdo ...

  7. 【BZOJ 1419】Red is good [概率DP]

    我 是 Z Z 概率好玄啊(好吧是我太弱.jpg Description 桌面上有R张红牌和B张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付出1美元.可以随时停止翻 ...

  8. Machine learning(4-Linear Regression with multiple variables )

    1.Multiple features So what the form of the hypothesis should be ? For convenience, define x0=1 At t ...

  9. 无判断max 牛客网 程序员面试金典 C++ Python

    无判断max 牛客网  程序员面试金典 C++ Python 题目描述 请编写一个方法,找出两个数字中最大的那个.条件是不得使用if-else等比较和判断运算符. 给定两个int a和b,请返回较大的 ...

  10. Luogu P2467 [SDOI2010]地精部落 | 神奇的dp

    题目链接 DP 题目大意:给定一个数n,求1~n这n个整数的所有排列中有多少个波动数列,将这个数量%p后输出. 什么是波动数列呢?顾名思义,就是一个大.一个小.一个大.一个小--或者是一个小.一个大. ...