Java8的Stream API确实很牛,但性能究竟如何?
Stream Performance
已经对 Stream API 的用法鼓吹够多了,用起简洁直观,但性能到底怎么样呢?会不会有很高的性能损失?本节我们对 Stream API 的性能一探究竟。
为保证测试结果真实可信,我们将 JVM 运行在 -server模式下,测试数据在 GB 量级,测试机器采用常见的商用服务器,配置如下:
测试方法和测试数据
性能测试并不是容易的事,Java 性能测试更费劲,因为虚拟机对性能的影响很大,JVM 对性能的影响有两方面:
- GC 的影响。GC 的行为是 Java 中很不好控制的一块,为增加确定性,我们手动指定使用 CMS 收集器,并使用 10GB 固定大小的堆内存。具体到 JVM 参数就是 -XX:+UseConcMarkSweepGC-Xms10G-Xmx10G
- JIT(Just-In-Time) 即时编译技术。即时编译技术会将热点代码在 JVM 运行的过程中编译成本地代码,测试时我们会先对程序预热,触发对测试函数的即时编译。相关的 JVM 参数是 -XX:CompileThreshold=10000。
Stream 并行执行时用到 ForkJoinPool.commonPool()得到的线程池,为控制并行度我们使用 Linux 的 taskset命令指定 JVM 可用的核数。
测试数据由程序随机生成。为防止一次测试带来的抖动,测试 4 次求出平均时间作为运行时间。
实验一 基本类型迭代
测试内容:找出整型数组中的最小值。对比 for 循环外部迭代和 Stream API 内部迭代性能。
测试程序 IntTest,测试结果如下图:
图中展示的是 for 循环外部迭代耗时为基准的时间比值。分析如下:
- 对于基本类型 Stream 串行迭代的性能开销明显高于外部迭代开销(两倍);
- Stream 并行迭代的性能比串行迭代和外部迭代都好。
并行迭代性能跟可利用的核数有关,上图中的并行迭代使用了全部 12 个核,为考察使用核数对性能的影响,我们专门测试了不同核数下的 Stream 并行迭代效果:
分析,对于基本类型:
- 使用 Stream 并行 API 在单核情况下性能很差,比 Stream 串行 API 的性能还差;
- 随着使用核数的增加,Stream 并行效果逐渐变好,比使用 for 循环外部迭代的性能还好。
以上两个测试说明,对于基本类型的简单迭代,Stream 串行迭代性能更差,但多核情况下 Stream 迭代时性能较好。
实验二 对象迭代
再来看对象的迭代效果。
测试内容:找出字符串列表中最小的元素(自然顺序),对比 for 循环外部迭代和 Stream API 内部迭代性能。
测试程序 StringTest,测试结果如下图:
结果分析如下:
- 对于对象类型 Stream 串行迭代的性能开销仍然高于外部迭代开销(1.5 倍),但差距没有基本类型那么大。
- Stream 并行迭代的性能比串行迭代和外部迭代都好。
再来单独考察 Stream 并行迭代效果:
分析,对于对象类型:
- 使用 Stream 并行 API 在单核情况下性能比 for 循环外部迭代差;
- 随着使用核数的增加,Stream 并行效果逐渐变好,多核带来的效果明显。
以上两个测试说明,对于对象类型的简单迭代,Stream 串行迭代性能更差,但多核情况下 Stream 迭代时性能较好。
实验三 复杂对象归约
从实验一、二的结果来看,Stream 串行执行的效果都比外部迭代差(很多),是不是说明 Stream 真的不行了?先别下结论,我们再来考察一下更复杂的操作。
测试内容:给定订单列表,统计每个用户的总交易额。对比使用外部迭代手动实现和 Stream API 之间的性能。
我们将订单简化为 <userName,price,timeStamp>构成的元组,并用 Order对象来表示。测试程序 ReductionTest,测试结果如下图:
分析,对于复杂的归约操作:
- Stream API 的性能普遍好于外部手动迭代,并行 Stream 效果更佳;
再来考察并行度对并行效果的影响,测试结果如下:
分析,对于复杂的归约操作:
- 使用 Stream 并行归约在单核情况下性能比串行归约以及手动归约都要差,简单说就是最差的;
- 随着使用核数的增加,Stream 并行效果逐渐变好,多核带来的效果明显。
以上两个实验说明,对于复杂的归约操作,Stream 串行归约效果好于手动归约,在多核情况下,并行归约效果更佳。我们有理由相信,对于其他复杂的操作,Stream API 也能表现出相似的性能表现。
结论
上述三个实验的结果可以总结如下:
- 对于简单操作,比如最简单的遍历,Stream 串行 API 性能明显差于显示迭代,但并行的 Stream API 能够发挥多核特性。
- 对于复杂操作,Stream 串行 API 性能可以和手动实现的效果匹敌,在并行执行时 Stream API 效果远超手动实现。
所以,如果出于性能考虑,1. 对于简单操作推荐使用外部迭代手动实现,2. 对于复杂操作,推荐使用 Stream API, 3. 在多核情况下,推荐使用并行 Stream API 来发挥多核优势,4. 单核情况下不建议使用并行 Stream API。
如果出于代码简洁性考虑,使用 Stream API 能够写出更短的代码。即使是从性能方面说,尽可能的使用 Stream API 也另外一个优势,那就是只要 Java Stream 类库做了升级优化,代码不用做任何修改就能享受到升级带来的好处。
Java8的Stream API确实很牛,但性能究竟如何?的更多相关文章
- Java8的Stream API使用
前言 这次想介绍一下Java Stream的API使用,最近在做一个新的项目,然后终于可以从老项目的祖传代码坑里跳出来了.项目用公司自己的框架搭建完成后,我就想着把JDK版本也升级一下吧(之前的项目, ...
- 【Java8新特性】关于Java8的Stream API,看这一篇就够了!!
写在前面 Java8中有两大最为重要的改变.第一个是 Lambda 表达式:另外一个则是 Stream API(java.util.stream.*) ,那什么是Stream API呢?Java8中的 ...
- 如何用Java8 Stream API找到心仪的女朋友
传统的的Java 集合操作是有些啰嗦的,当我们需要对结合元素进行过滤,排序等操作的时候,通常需要写好几行代码以及定义临时变量. 而Java8 Stream API 可以极大简化这一操作,代码行数少,且 ...
- Spring WebFlux 学习笔记 - (一) 前传:学习Java 8 Stream Api (1) - 创建 Stream
影子 在学习Spring WebFlux之前,我们先来了解JDK的Stream,虽然他们之间没有直接的关系,有趣的是 Spring Web Flux 基于 Reactive Stream,他们中都带了 ...
- Java8中的Stream API
本篇文章继续介绍Java 8的另一个新特性——Stream API.新增的Stream API与InputStream和OutputStream是完全不同的概念,Stream API是对Java中集合 ...
- 十分钟学会Java8的lambda表达式和Stream API
01:前言一直在用JDK8 ,却从未用过Stream,为了对数组或集合进行一些排序.过滤或数据处理,只会写for循环或者foreach,这就是我曾经的一个写照. 刚开始写写是打基础,但写的多了,各种乏 ...
- Java8新特性之三:Stream API
Java8的两个重大改变,一个是Lambda表达式,另一个就是本节要讲的Stream API表达式.Stream 是Java8中处理集合的关键抽象概念,它可以对集合进行非常复杂的查找.过滤.筛选等操作 ...
- 十分钟学会Java8:lambda表达式和Stream API
Java8 的新特性:Lambda表达式.强大的 Stream API.全新时间日期 API.ConcurrentHashMap.MetaSpace.总得来说,Java8 的新特性使 Java 的运行 ...
- Java8中的 lambda 和Stream API
前言 由于项目中用到了比较多有关于 Java8 中新的东西,一开始自己只是会写,但是写起来不太顺,然后就在网上找到了一个很好的关于Java8新特性的视频,所以就进行了学习了一下,以下是自己对 la ...
随机推荐
- android之Tween Animation
android Tween Animation有四种,AlphaAnimation(透明度动画).ScaleAnimation(尺寸伸缩动画).TranslateAnimation(位移动画).Rot ...
- 快速上手NumPy
NumPy is the fundamental package for scientific computing in Python. NumPy是一个开源的Python科学计算库. 官网:ht ...
- k3d入门指南:在Docker中运行K3s
在本文中,我们将简单了解k3d,这是一款可让您在安装了Docker的任何地方运行一次性Kubernetes集群的工具,此外在本文中我们还将探讨在使用k3d中可能会出现的一切问题. 什么是k3d? k3 ...
- CentOS7配置kdump
CentOS7配置kdump 简单生活,简单爱 2020-10-27 16:29:56 56 收藏 1 分类专栏: Linux实际开发总结 版权 文章目录 1.kdump简介 2.配置kdump ...
- 分布式存储ceph---部署ceph(2)
一.部署准备 准备5台机器(linux系统为centos7.6版本),当然也可以至少3台机器并充当部署节点和客户端,可以与ceph节点共用: 1台部署节点(配一块硬盘,运行ceph-depoly) 3 ...
- C语言中位运算异或“∧”的作用
1.概念异或运算符"∧"也称XOR运算符.它的规则是若参加运算的两个二进位同号,则结果为0(假):异号则为1(真).即 0∧0=0,0∧1=1, 1^0=1,1∧1=0.运算 ...
- 3.23 vi/vim:纯文本编辑器
vi/vim 是Linux命令行界面下的文字编辑器,几乎所有的Linux系统都安装了vi,只要学会了vi这个编辑工具,就可以在任何Linux系统上使用它.而vim是vi命令的增强版(Vi IMprov ...
- kubernetes 降本增效标准指南|理解弹性,应用弹性
弹性伸缩在云计算领域的简述 弹性伸缩又称自动伸缩,是云计算场景下一种常见的方法,弹性伸缩可以根据服务器上的负载.按一定的规则.进行弹性的扩缩容服务器. 弹性伸缩在不同场景下的含义: 对于服务运行在自建 ...
- Java,用户刷屏检测\相似字符串检测
背景 近期有几个业务方提出一需求,期望判断一个用户在短期内是否存在刷屏现象,出现后能对其做出限制,并上报. 刷屏定义:取出用户近期20条评论,如果有50%的评论是"相似"的,则认为 ...
- Python+Selenium - 文件上传
如下图,从系统点击上传功能,打开到这种如下图页面的才适合本文介绍的处理方法 处理方法一 pywinauto库 优点:可以选择多个文件,路径中有中文也支持 缺点:只能Windows平台使用 安装 pip ...