题解 P3451 [POI2007]ATR-Tourist Attractions
题解
这里的做法是卡空间的做法,相比于滚动数组,这种做法因为没有三维数组寻址的大常数,所以较快。
在普通的做法中,\(dp[state][i]\) 表示以 \(i\) 结尾,那么 \(state\) 一定是包含 \(i\) 的状态,所以在 \(state\) 中可以省掉 \(i\) 这一位
所以 \(cost=(k+1)×2^{k-1}×4kb\) ,大约为 \(42MB\)
注:本题用 \(spfa\) 会比 \(dijkstra\) 快很多
Code:
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=0;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
}
using IO::read;
namespace nanfeng{
#define node(x,y) (node){x,y}
#define cmax(x,y) ((x)>(y)?(x):(y))
#define cmin(x,y) ((x)>(y)?(y):(x))
#define FI FILE *IN
#define FO FILE *OUT
static const int N=2e4+7,M=2e5+7;
int first[N],dp[1<<19][21],pre[21],dis[21][N],vis[N],n,m,q,k,t=2,S;
struct edge{int v,w,nxt;}e[M<<1];
struct node{int x,dis;};
priority_queue<node> que;
inline int operator<(const node &n1,const node &n2) {return n1.dis>n2.dis;}
inline void add(int u,int v,int w) {
e[t].v=v,e[t].w=w,e[t].nxt=first[u],first[u]=t++;
e[t].v=u,e[t].w=w,e[t].nxt=first[v],first[v]=t++;
}
inline void dij(int rt){
memset(vis,0,sizeof(vis));
memset(dis[rt-1],0x3f,sizeof(dis[rt-1]));
dis[rt-1][rt-1]=0;
que.push(node(rt,0));rt-=1;
while(!que.empty()) {
int x(que.top().x),dist(que.top().dis);
que.pop();
if (vis[x]) continue;
vis[x]=1;
for (ri i(first[x]),v;i;i=e[i].nxt) {
if (dis[rt][v=e[i].v-1]>dist+e[i].w) {
dis[rt][v]=dist+e[i].w;
que.push(node(v+1,dis[rt][v]));
}
}
}
}
inline int calc(int x,int l) {
if ((1<<l)>x) return x;
ri tmp=x&((1<<l)-1);
return (x>>(l+1))<<l|tmp;
}
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.txt","w",stdout);
read(n),read(m),read(k);
for (ri i(1),u,v,w;i<=m;p(i)) read(u),read(v),read(w),add(u,v,w);
read(q);
for (ri i(1),r,s;i<=q;p(i)) {
read(r);read(s);
pre[s-2]|=1<<(r-2);
}
for (ri i(1);i<=k+1;p(i)) dij(i);
if (!k) {printf("%d\n",dis[0][n-1]);return 0;}
memset(dp,0x3f,sizeof(dp));
dp[0][0]=0;
for (ri i(1);i<=k;p(i)) if (!pre[i-1]) dp[0][i]=dis[0][i];
S=(1<<k)-1;
for (ri i(1);i<=S;p(i)) {
for (ri j(0);j<k;p(j)) {
if (!((1<<j)&i)) continue;
ri tmp1=calc(i,j);
for (ri l(0);l<k;p(l)) {
if (!(i&(1<<l))&&((i&pre[l])==pre[l])) {
ri tmp2=calc(i,l);
dp[tmp2][l+1]=cmin(dp[tmp1][j+1]+dis[j+1][l+1],dp[tmp2][l+1]);
}
}
}
}
ri ans=INT_MAX;
for (ri i(1),tmp;i<=k;p(i)) {
tmp=calc(S,i-1);
ans=cmin(ans,dp[tmp][i]+dis[i][n-1]);
}
printf("%d\n",ans);
return 0;
}
}
int main() {return nanfeng::main();}
题解 P3451 [POI2007]ATR-Tourist Attractions的更多相关文章
- csp-s模拟48,49 Tourist Attractions,养花,画作题解
题面:https://www.cnblogs.com/Juve/articles/11569010.html Tourist Attractions: 暴力当然是dfs四层 优化一下,固定两个点,答案 ...
- 【题解】Uoj#30 Tourist(广义圆方树+树上全家桶)
[题解]Uoj#30 Tourist(广义圆方树+树上全家桶) 名字听起来很霸气其实算法很简单.... 仙人掌上的普通圆方树是普及题,但是广义圆方树虽然很直观但是有很多地方值得深思 说一下算法的流程: ...
- [POI2007]Tourist Attractions
题目大意: 给你一个$n(n\leq 2\times 10^4)$个点,$m(m\leq 2\times 10^5)$条边的带边权的连通图.其中有$k(k\leq 20)$个关键点.关键点之间有$g$ ...
- 旅游景点 Tourist Attractions 题解
题面在这里 再次破了纪录,连做了3天... 让我们从头来一点一点分析 1.预处理 先看题面,乍一看貌似是个图论题,有n个点m条边,给定一些必须经过的点和强制经过顺序,求一条最短路 我们发现n和m都比较 ...
- [CSP-S模拟测试]:Tourist Attractions(简单图论+bitset)
题目描述 在美丽的比特镇一共有$n$个景区,编号依次为$1$到$n$,它们之间通过若干条双向道路连接.$Byteasar$慕名来到了比特镇旅游,不过由于昂贵的门票费,他只能负担起$4$个景区的门票费. ...
- 比特镇旅游(Tourist Attractions)【暴力+Bitset 附Bitset用法】
Online Judge:NOIP2016十连测第一场 T2 Label:暴力,Bitset 题目描述 在美丽的比特镇一共有n个景区,编号依次为1到n,它们之间通过若干条双向道路连接. Byteasa ...
- LYDSY模拟赛day1 Tourist Attractions
/* 假设路径是 a − b − c − d,考虑枚举中间这条边 b − c,计 算有多少可行的 a 和 d. 设 degx 表示点 x 的度数,那么边 b − c 对答案的贡献为 (degb − 1 ...
- 解题:POI 2007 Tourist Attractions
题面 事实上这份代码在洛谷过不去,因为好像要用到一些压缩空间的技巧,我并不想(hui)写(捂脸) 先预处理$1$到$k+1$这些点之间相互的最短路和它们到终点的最短路,并记录下每个点能够转移到时的状态 ...
- 【JZOJ4857】Tourist Attractions(Bitset)
题意:给定一个n个点的无向图,求这个图中有多少条长度为4的简单路径. n<=1500 思路: #include<map> #include<set> #include&l ...
随机推荐
- bugku Crypto 下半部分wp
1. 百度托马斯这个人居然还发明了一种轮转的加密法,发现原理是,他将很多行乱序的26个字母,插到一根柱子上,参考糖葫芦的样子,可以旋转每一行,设置自己要发送的明文后,向对方发送乱码的一列,对方只要将这 ...
- Echarts入门踩坑记录
关于Echarts,官网上,是这样介绍的,"Echarts,一个使用JavaScript实现的开源可视化库",也就是说,在使用过程中,将其作为普通的JavaScript组件库使用即 ...
- Ubuntu 18.04 开启 root 账号并允许远程连接
转载:https://blog.csdn.net/u010766726/article/details/105376461 以普通用户登录系统 通过 "终端" 操作 普通用户 – ...
- Spring解决Attribute tx bound to namespace httpwww.w3.org2000xmlns was already specified
Spring|解决Attribute "tx" bound to namespace "http://www.w3.org/2000/xmlns/" was a ...
- Python -- 值转换为字符串的两种机制
可以通过以下两个函数来使用这两种机制:一是通过str函数,它会把值转换为合理形式的字符串,以便用户可以理解:而repr会创建一个字符串,它以合法的Python表达式的形式来表示值.下面是一些例子: & ...
- Java生鲜电商平台-关于学习生鲜电商平台的思考(小程序/APP)
Java生鲜电商平台-关于学习生鲜电商平台的思考(小程序/APP) 说明:最近群里面的一个网友问的一个问题,让我陷入了深思,他问的问题很基础也很真实,"大佬,你们是怎么学习的呢?" ...
- 说说Java异步调用的几种方式
日常开发中,会经常遇到说,前台调服务,然后触发一个比较耗时的异步服务,且不用等异步任务的处理结果就对原服务进行返回.这里就涉及的Java异步调用的一个知识.下面本文尝试将Java异步调用的多种方式进行 ...
- Jenkins(8080)未授权访问
下载地址http://mirrors.jenkins.io/debian/ 测试 浏览器访问http://localhost:8080/manage可以直接访问 点击脚本命令行 println &qu ...
- DC-9 靶机渗透测试
DC-9 渗透测试 冲冲冲,好好学习 DC系列的9个靶机做完了,对渗透流程基本掌握,但是实战中出现的情况千千万万,需要用到的知识面太广了,学不可以已. 靶机IP: 172.66.66.139 kali ...
- unittest系统(八)一文搞定unittest重试功能
在前面的介绍中,我们对unittest进行了分享介绍,那么在实际的应用中,因为客观原因需要对失败,错误的测试用例进行重试,所以呢,现有的unittest的框架无法满足,那么我们可以去改造下是否能够满足 ...