基于MATLAB的中值滤波均值滤波以及高斯滤波的实现
基于MATLAB的中值滤波均值滤波以及高斯滤波的实现
作者:lee神
1. 背景知识
中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值.
中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。
方法是用某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列。二维中值滤波输出为g(x,y)=med{f(x-k,y-l),(k,l∈W)} ,其中,f(x,y),g(x,y)分别为原始图像和处理后图像。W为二维模板,通常为3*3,5*5区域,也可以是不同的的形状,如线状,圆形,十字形,圆环形等。
|
2 |
4 |
8 |
||
|
1 |
3 |
9 |
||
|
5 |
7 |
6 |
||
g(x,y)=med{f(x-k,y-l),(k,l∈W)}
g = med[2,4,8;1,3,9;5,7,6] = 5
中值滤波后的结果
|
5 |
||||
均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。
均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度g(x,y),即g(x,y)=1/m ∑f(x,y) m为该模板中包含当前像素在内的像素总个数。
均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。
|
2 |
4 |
8 |
||
|
1 |
3 |
9 |
||
|
5 |
7 |
6 |
||
g(x,y)=1/m ∑f(x,y)
g = (1/8)*(2+4+8+1+9+5+7+6) = 5
均值滤波后的结果:
|
5 |
||||
高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。
- 2. MATLAB实现
源码:
%%-------------------------------------------------------------------
%% 2018/01/03
%% lee
%% 137194782@qq.com
%% 微信公众号:FPGA开源工作室
%%-------------------------------------------------------------------
clear all;
clc;
M = imread('timg.jpg'); %读取MATLAB中的名为timg的图像
figure,imshow(M); %显示原始图像
title('original');
gray = rgb2gray(M);
figure,imshow(gray); %显示灰度图像
title('gray');
P1 = imnoise(gray,'gaussian',0.02); %加入高斯躁声
figure,imshow(P1); %加入高斯躁声后显示图像
title('gaussian noise');
P2 = imnoise(gray,'salt & pepper',0.02); %加入椒盐躁声
figure,imshow(P2); %加入椒盐躁声后显示图像
title('salt & pepper noise');
g = medfilt2(P1); %对高斯躁声中值滤波
figure,imshow(g);
title('medfilter gaussian');
h = medfilt2(P2); %对椒盐躁声中值滤波
figure,imshow(h);
title('medfilter salt & pepper noise');
a=[1 1 1 %对高斯躁声算术均值滤波
1 1 1
1 1 1];
l=1/9*a;
k = conv2(double(P1),double(l));
figure,imshow(k,[]);
title('arithmeticfilter gaussian');
d = conv2(double(P2),double(l)); %对椒盐躁声算术均值滤波
figure,imshow(d,[]);
title('arithmeticfilter salt & pepper noise');
sigma=8;% 标准差大小
window=double(uint8(3*sigma)*2+1);% 窗口大小一半为3*sigma
H=fspecial('gaussian', window, sigma);% fspecial('gaussian', hsize, sigma)产生滤波模板
img_gauss=imfilter(P1,H,'replicate'); %为了不出现黑边,使用参数'replicate'(输入图像的外部边界通过复制内部边界的值来扩展)
figure, imshow(img_gauss);
title('gaussian filting gauss noise');
img_salt=imfilter(P2,H,'replicate');
figure, imshow(img_salt);
title('gaussian filting salt pepper noise');
结果展示:

原始图像

灰度图像

加入高斯噪声的灰度图像

加入椒盐噪声的灰度图像

经过中值滤波后的高斯噪声灰度图像

经过中值滤波后的椒盐噪声灰度图像

经过均值滤波后的高斯噪声灰度图像

经过均值滤波后的椒盐噪声灰度图像

经过高斯滤波后的高斯噪声灰度图像

经过高斯滤波的椒盐噪声的灰度图像
结果分析:图像经过中值滤波后,高斯噪声没有被完全去除,椒盐噪声几乎被完全去除效果较好。经过均值滤波后不管是高斯噪声还是椒盐噪声大部分都没有被去除,只是稍微模糊化。经过高斯滤波后,高斯噪声和椒盐噪声几乎被很大程度的模糊化,原图好像被加上了一层蒙版。
欢迎大家关注我的微信公众号FPGA开源工作室和资源共享QQ群。(*  ̄3)(ε ̄ *)

基于MATLAB的中值滤波均值滤波以及高斯滤波的实现的更多相关文章
- 基于MATLAB的中值滤波算法实现
在实时图像采集中,不可避免的会引入噪声,尤其是干扰噪声和椒盐噪声,噪声的存在严重影响边缘检测的效果,中值滤波是一种基于排序统计理论的非线性平滑计数,能有效平滑噪声,且能有效保护图像的边缘信息,所以被广 ...
- 基于FPGA的中值滤波算法实现
在这一篇开篇之前,我需要解决一个问题,上一篇我们实现了基于FPGA的均值滤波算法的实现,最后的显示效果图上发现有一些黑白色的斑点,我以为是椒盐噪声,然后在做基于FPGA的中值滤波算法的实验时,我发现黑 ...
- [学习opencv]高斯、中值、均值、双边滤波
http://www.cnblogs.com/tiandsp/archive/2013/04/20/3031862.html [学习opencv]高斯.中值.均值.双边滤波 四种经典滤波算法,在ope ...
- OpenCv高斯,中值,均值,双边滤波
#include "cv.h" #include "highgui.h" #include <iostream> using namespace s ...
- Matlab图像处理——中值滤波medfilt2问题解决
本文链接:https://blog.csdn.net/Pxzly1117/article/details/79201772程序: I=imread('13.jpg');%读入图像imshow(I);h ...
- matlab中fspecial Create predefined 2-D filter以及中值滤波均值滤波以及高斯滤波
来源: 1.https://ww2.mathworks.cn/help/images/ref/fspecial.html?searchHighlight=fspecial&s_tid=doc_ ...
- 学习 opencv---(8)非线性滤波:中值滤波,双边滤波
正如我们上一篇文章中讲到的,线性滤波可以实现很多种不同的图像变换.然而非线性滤波,如中值滤波器和双边滤波器,有时可以达到更好的实现效果. 邻域算子的其他一些例子还有对 二值图像进行操作的形态学算子,用 ...
- verilog实现中值滤波
前言 项目需要,想要实现算法中的其中一步即中值滤波,同时,因为图像处理部分中值滤波相对来说还是比较简单的,将中值滤波的硬件实现作为进入FPGA领域的第一次尝试.虽然说网上有较多关于中值滤波的文档,可是 ...
- matlab做gaussian高斯滤波
原文链接:https://blog.csdn.net/humanking7/article/details/46826105 核心提示 在Matlab中高斯滤波非常方便,主要涉及到下面两个函数: 函数 ...
随机推荐
- HDU 2795 Billboard 线段树,区间最大值,单点更新
Billboard Time Limit: 20000/8000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- ThinkPHP的Rbac权限控制
RBAC(Role-Based Access Controll)基于角色的访问控制 在 ThinkPHP3.2.3 中 RBAC 类位于 /ThinkPHP/Library/Org/Util/Rbac ...
- 地图开发GIS的应用有哪些?
GIS的应用领域有哪些? 地理信息系统在最近的30多年内取得了惊人的发展,广泛应用于资源调查.环境评估.灾害预测.国土管理.城市规划.邮电通讯.交通运输.军事公安.水利电力.公共设施管理.农林牧业.统 ...
- 16进制到byte转换
我们经常会看到这样的语法 (byte) 0xAD 0xAD实际是个16进制,转换成二进制为:10101101,转换成10进制是:173,它是个正数 10101101只是int的简写,int由4个byt ...
- [置顶]
spring集成mina 实现消息推送以及转发
spring集成mina: 在学习mina这块时,在网上找了很多资料,只有一些demo,只能实现客户端向服务端发送消息.建立长连接之类.但是实际上在项目中,并不简单实现这些,还有业务逻辑之类的处理以及 ...
- [Android App]IFCTT,即:If Copy Then That,是一个基于IFTTT的"This"实现
以下内容为原创,欢迎转载,转载请注明 来自天天博客:http://www.cnblogs.com/tiantianbyconan/p/8075738.html IFCTT,即:If Copy Then ...
- JavaScript实现策略模式
在开篇之前先分享今天看到的一句关于设计模式的话:将不变的部分和变化的部分隔开是每个设计模式的主题 请大家自行感受这句话的精髓所在,并且思考学习设计模式究竟能给我们编程带来什么样的东西,欢迎大家在文章下 ...
- OJ随笔——【1102-海明距离】——位运算
题目如下: Description 海明距离是在指二进制情况下,一个整数变成另外一个整数需要翻转的位数.比如2转换到3需要翻转1位,所以2到3的海明距离是1.给你两个正整数x和y,(x,y<=1 ...
- mock.js的真实数据模拟
哈哈,怎么说,这应该是我的第一个随笔了,毕竟前端之路上一直在学习并且各位大神们的经验,虽然也有不少的坑,但是总是收获比较多,所以我也想把一些收获记录下来,有需要的可以参考参考. 网上看了不少大神很多例 ...
- 自学Zabbix3.5-监控项item
itemItems是从主机里面获取的所有数据.通常情况下item为监控项,一般网络设备.服务器加入了zabbix监控,就需要监控它的cpu负载,那么实现这个方法的东西就叫item. 1. item构成 ...