朱世杰恒等式的应用-以CF841C为例
题目大意
Codeforces 841C Leha and Function.
令\(F(n,k)\)为在集合\(\{x|x \in [1,n]\}\)中选择一个大小为k的子集,最小元素的期望值。
给定数组\(a_i,b_i\),满足\(\forall_{i,j}a_i \geqslant b_j\).求出\(a_i\)的一个排列\(a'_i\),使得\(\sum_{i} F(a_i,b_i)\)最大。
朱世杰恒等式
在这里介绍一个非常有用的关于组合数求和的公式——朱世杰恒等式(i.e. Hockey-stick identity):
\[
\sum_{i=m}^{n}\dbinom{i}{k} = \dbinom{n+1}{k+1} - \dbinom {m}{k+1}
\]
当\(m=k\)时:
\[
\sum_{i=m}^n \dbinom{i}{m} = \dbinom {n+1}{m+1}
\]
不失一般性,对于特殊情况作出证明,容易推广到第一个式子。
证明
对\(n\)施用数学归纳法。
当\(n=m\)时, 显然成立.
对于\(n-1 \geqslant m\), 假设对于\(n-1\)成立, 那么:
\(\sum_{i=m}^{n-1} \dbinom im = \dbinom {n}{m+1}\).
\(\sum_{i=m}^n \dbinom im = \dbinom{n}{m+1} + \dbinom {n}{m} = \dbinom {n+1}{m+1}\)
Q.E.D.
其他证明方法见维基百科
关于F(n,k)的推演
在比赛中, 我首先得到了\(F(n,k)\)的递推式:
\[F(n,k) = \frac kn F(n-1, k-1) + (1-\frac kn) F(n-1, k)\].
我们可以使用强数学归纳法证明:
\[F(n,k) = \frac {n+1}{k+1}\].
不过, 有一个更为简单的方法:
显然,
\[F(n,k) = \frac {1}{\dbinom{n}{k}}\sum_{i=1}^n i \dbinom{n-i}{k-1} \]
而:
\[\sum_{i=1}^n i\dbinom{n-i}{k-1} = \sum_{i=1}^{n-k+1}\sum_{j=1}^{n-k+1}\dbinom{n-j}{k-1}\\=\sum_{i=1}^{n-k+1}\sum_{j=k-1}^{n-i}\dbinom{j}{k-1} \\=\sum_{i=1}^{n-k+1} \dbinom{n-i+1}{k}\\=\sum_{i=k}^{n}\dbinom{i}{k} = \dbinom{n+1}{k+1}\]
于是:
\(F(n,k) = \frac{\dbinom{n+1}{k+1}}{\dbinom{n}{k}} = \frac {n+1}{k+1}\).
Q.E.D.
关于贪心的证明
那么问题就变成了:
给定数组\(a_i, b_i\),
\[\max \sum_{i=1}^n \frac{a_i+1}{b_i + 1}\].
我们证明, 给较大的\(a_i\)应搭配较小的\(b_i\).
对于\(0 \leqslant a_1 \leqslant a_2, 0 \leqslant b_1 \leqslant b_2\), 我们证明
\(a_1b_1 + a_2b_2 \leqslant a_1b_2 + a_2b_1\).
我们可以做差证明上面的式子.
那么我们可以使用证明贪心的常用方法,交换法(i.e. 冒泡排序法)来证明贪心的correctness.
算法
经过上面的推演,我们终于得到了这个问题的标算:
把b数组从小到大排序,a数组从大到小排序,一一对应即可.
然而,在比赛中,样例却直接给除了解法,令人遗憾.
比赛的时候推了很久,虽然早就知道贪心做法.
参考文献
朱世杰恒等式的应用-以CF841C为例的更多相关文章
- CodeChef - NWAYS 组合数 朱世杰恒等式
这道题目数据有坑,白浪费一个小时! 题意:求\(\sum_{i=1}^n\sum_{j=1}^n{|i-j|+k \choose k}\) 知识点: 朱世杰恒等式,\(\sum_{i=r}^n{i \ ...
- 2019.10.22 csp-s模拟测试82 反思总结
重来重来,刚刚就当什么都没发生 今天的题属实有些迷惑,各种意义上…总之都很有难度吧.不满归不满,这套题的确不是什么没有意义的题目. 为了考验自己的学习能力记忆力,决定不写题解,扔个代码完事了 其实是懒 ...
- .NET Core 首例 Office 开源跨平台组件(NPOI Core)
前言 最近项目中,需要使用到 Excel 导出,找了一圈发现没有适用于 .NET Core的,不依赖Office和操作系统限制的 Office 组件,于是萌生了把 NPOI 适配并移植到 .NET C ...
- 以向VS 程序打包集成自动写入注册表功能为例,介绍如何实现自由控制安装过程
最近由于项目部署时需要更灵活的控制程序安装的流程以及自定义安装行为,特意研究了一下VS程序打包,把解决办法和大家分享一下. 以VS2010为例: 这是一个已经设置好最基本的Visual Studio ...
- UWP开发:APP之间的数据交互(以微信为例)
目录 说明 UWP应用唤醒方式 跟微信APP交互数据 APP之间交互数据的前提 说明 我们经常看到,在手机上不需要退到桌面,APP之间就可以相互切换,并且可以传递数据.比如我在使用知乎APP的时候,需 ...
- C++的性能C#的产能?! - .Net Native 系列《三》:.NET Native部署测试方案及样例
之前一文<c++的性能, c#的产能?!鱼和熊掌可以兼得,.NET NATIVE初窥> 获得很多朋友支持和鼓励,也更让我坚定做这项技术的推广者,希望能让更多的朋友了解这项技术,于是先从官方 ...
- CSharpGL(34)以从零编写一个KleinBottle渲染器为例学习如何使用CSharpGL
CSharpGL(34)以从零编写一个KleinBottle渲染器为例学习如何使用CSharpGL +BIT祝威+悄悄在此留下版了个权的信息说: 开始 本文用step by step的方式,讲述如何使 ...
- Android 打开方式选定后默认了改不回来?解决方法(三星s7为例)
Android 打开方式选定后默认了改不回来?解决方法(三星s7为例) 刚刚在测试东西,打开一个gif图,然后我故意选择用支付宝打开,然后...支付宝当然不支持,我觉得第二次打开它应该还会问我,没想到 ...
- 数据库中树形列表(以easyui的tree为例)
构造一棵easyui前台框架的一个树形列表为例后台框架是spring MVC+JPA. 先看一下数据库是怎么建的,怎么存放的数据 下面是实体类 /** * 部门类 用户所属部门(这里的部门是一个相对抽 ...
随机推荐
- jquery.validata.js 插件
一.Validate插件描述 Validate是基于jQuery的一款轻量级验证插件,内置丰富的验证规则,还有灵活的自定义规则接口,HTML.CSS与JS之间的低耦合能让您自由布局和丰富样式,支持in ...
- Java 容器在实际项目开发中应用
前言:在java开发中我们离不开集合数组等,在java中有个专有名词:"容器" ,下面会结合Thinking in Java的知识和实际开发中业务场景讲述一下容器在Web项目中的用 ...
- Mac之OS系统下搭建JavaEE环境 <五> 之Mysql数据库的安装及配置
这里将推荐两款 集成的Mysql环境 十分轻便好用,MAMP 和 XAMPP MAMP XAMPP 1.MAMP下载 官网: https://www.mamp.info/en/ 下载安装即可使用 MA ...
- Redis Pipeline原理分析
转载请注明出处:http://www.cnblogs.com/jabnih/ 1. 基本原理 1.1 为什么会出现Pipeline Redis本身是基于Request/Response协议的,正常情况 ...
- SQL Server Alwayson配置两个节点加共享文件夹仲裁见证
标签:MSSQL/节点和共享文件夹多数 概述 之前讲过多数节点的仲裁配置,多数节点一般3个节点以上的奇数个节点:常见的是使用3个节点节点多了也是浪费因为Alwayson的只读路由只能利用到一个只读副本 ...
- 使用joda-time工具类 计算时间相差多少 天,小时,分钟,秒
下面程序使用了两种方法计算两个时间相差 天,小时,分钟,秒 package jodotest; import java.text.ParseException; import java.text.Si ...
- Android补间动画笔记
布局文件: <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns: ...
- Es6 新增解构赋值
1.数组的解构赋值 基本用法 ES6 允许按照一定模式,从数组和对象中提取值,对变量进行赋值,这被称为解构(Destructuring). 要想实现解构,就必须是容器,或者具有可遍历的接口. 以前,为 ...
- xdu_1048:二分匹配模板测试
二分匹配的模板题,这里用网络流模板(见刘汝佳<算法竞赛入门经典·训练指南>P359 Dinic算法)做. 将男女生均看做网络上的节点,题中给出的每个"关系"看做一条起点 ...
- SQL Server 数据库表的管理
上一篇文章简单梳理了一下SQL Server数据库的安装和基本操作,这篇文章主要讲述一下数据库表的管理 一.数据库的创建 有关数据库的创建有两种方式,一种是通过视图创建,第二种就是通过T-SQL语句来 ...