原创播客,如需转载请注明出处。原文地址:http://www.cnblogs.com/crawl/p/7687120.html

----------------------------------------------------------------------------------------------------------------------------------------------------------

笔记中提供了大量的代码示例,需要说明的是,大部分代码示例都是本人所敲代码并进行测试,不足之处,请大家指正~

本博客中所有言论仅代表博主本人观点,若有疑惑或者需要本系列分享中的资料工具,敬请联系 qingqing_crawl@163.com

-----------------------------------------------------------------------------------------------------------------------------------------------------------

前言:这一个月实在是抽不出空来写博客了,最近在为学校开发网上办事大厅,平时还要上课,做任务,很忙,压力也很大,终于在本月的最后一天抽出了点时间。其实,这一篇播客一直在我的草稿箱中,楼主本来想先仔细写一写 Hadoop 伪分布式的部署安装,然后介绍一些 HDFS 的内容再来介绍 MapReduce,是在是没有抽出空,今天就简单入门一下 MapReduce 吧。

一、MapReduce 概述

1.MapReduce 是一种分布式计算模型,由Google提出,主要用于搜索领域,解决海量数据的计算问题.

2.MapReduce 由两个阶段组成:Map和Reduce,用户只需要实现map()和reduce()两个函数,即可实现分布式计算

二、具体实现

1.先来看一下 Eclipse 中此应用的包结构

2.创建 map 的任务处理类:WCMapper

/*
* 1.Mapper 类的四个泛型中,前两个指定 mapper 输入数据的类型,后两个指定 mapper 输出数据的类型
* KEYIN 是输入的 key 的类型,VALUEIN 是输入的 value 的类型
* KEYOUT 是输出的 key 的类型,VALUEOUT 是输出的 value 的类型
* 2.map 和 reduce 的数据的输入输出都是以 key-value 对的形式封装的
* 3.默认情况下,框架传递给我们的 mapper 的输入数据中,key 是要处理的文本中一行的起始偏移量,为 Long 类型,
* 这一行的内容为 value,为 String 类型的
* 4.后两个泛型的赋值需要我们结合实际情况
* 5.为了在网络中传输时序列化更高效,Hadoop 把 Java 中的 Long 封装为 LongWritable, 把 String 封装为 Text
*/
public class WCMapper extends Mapper<LongWritable, Text, Text, LongWritable> { //重写 Mapper 中的 map 方法,MapReduce 框架每读一行数据就调用一次此方法
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//书写具体的业务逻辑,业务要处理的数据已经被框架传递进来,就是方法的参数中的 key 和 value
//key 是这一行数据的起始偏移量,value 是这一行的文本内容 //1.将 Text 类型的一行的内容转为 String 类型
String line = value.toString(); //2.使用 StringUtils 以空格切分字符串,返回 String[]
String[] words = StringUtils.split(line, " "); //3.循环遍历 String[],调用 context 的 writer()方法,输出为 key-value 对的形式
//key:单词 value:1
for(String word : words) {
context.write(new Text(word), new LongWritable(1));
} } }

2.创建 reduce 的任务处理类:WCReducer:

/*
* 1.Reducer 类的四个泛型中,前两个输入要与 Mapper 的输出相对应。输出需要联系具体情况自定义
*/
public class WCReducer extends Reducer<Text, LongWritable, Text, LongWritable> { //框架在 map 处理完之后,将所有的 kv 对缓存起来,进行分组,然后传递一个分组(<key,{values}>,例如:<"hello",{1,1,1,1}>),
//调用此方法
@Override
protected void reduce(Text key, Iterable<LongWritable> values, Context context)throws IOException, InterruptedException { //1.定义一个计数器
long count = 0; //2.遍历 values的 list,进行累加求和
for(LongWritable value : values) {
//使用 LongWritable 的 get() 方法,可以将 一个 LongWritable 类型转为 Long 类型
count += value.get();
} //3.输出这一个单词的统计结果
context.write(key, new LongWritable(count));
} }

3.创建一个类,用来描述一个特定的作业:WCRunner,(此类了楼主没有按照规范的模式写)

/**
* 此类用来描述一个特定的作业
* 例:1.该作业使用哪个类作为逻辑处理中的 map,哪个作为 reduce
* 2.指定该作业要处理的数据所在的路径
* 3.指定该作业输出的结果放到哪个路径
*/
public class WCRunner { public static void main(String[] args) throws Exception { //1.获取 Job 对象:使用 Job 静态的 getInstance() 方法,传入 Configuration 对象
Configuration conf = new Configuration();
Job wcJob = Job.getInstance(conf); //2.设置整个 Job 所用的类的 jar 包:使用 Job 的 setJarByClass(),一般传入 当前类.class
wcJob.setJarByClass(WCRunner.class); //3.设置本 Job 使用的 mapper 和 reducer 的类
wcJob.setMapperClass(WCMapper.class);
wcJob.setReducerClass(WCReducer.class); //4.指定 reducer 输出数据的 kv 类型 注:若 mapper 和 reducer 的输出数据的 kv 类型一致,可以用如下两行代码设置
wcJob.setOutputKeyClass(Text.class);
wcJob.setOutputValueClass(LongWritable.class); //5.指定 mapper 输出数据的 kv 类型
wcJob.setMapOutputKeyClass(Text.class);
wcJob.setMapOutputValueClass(LongWritable.class); //6.指定原始的输入数据存放路径:使用 FileInputFormat 的 setInputPaths() 方法
FileInputFormat.setInputPaths(wcJob, new Path("/wc/srcdata/")); //7.指定处理结果的存放路径:使用 FileOutputFormat 的 setOutputFormat() 方法
FileOutputFormat.setOutputPath(wcJob, new Path("/wc/output/")); //8.将 Job 提交给集群运行,参数为 true 表示显示运行状态
wcJob.waitForCompletion(true); } }

4.将此项目导出为 jar 文件

步骤:右击项目 --->  Export ---> Java ---> JAR file --->指定导出路径(我指定的为:e:\wc.jar) ---> Finish

5.将导出的 jar 包上传到 linux 上

楼主使用的方法是:在 SecureCRT 客户端中使用 Alt + p 快捷键打开上传文件的终端,输入 put e"\wc.jar  即可上传

6.创建初始测试文件:words.log

命令: vi words.log    自己输入测试数据即可

7.在 hdfs 中创建存放初始测试文件 words.log 的目录:我们在 WCRunner 中指定的是  /wc/srcdata/

命令:

[hadoop@crawl ~]$ hadoop fs -mkdir /wc
[hadoop@crawl ~]$ hadoop fs -mkdir /wc/srcdata

8.将初始测试文件 words.log 上传到 hdfs 的相应目录

命令:[hadoop@crawl ~]$ hadoop fs -put words.log /wc/srcdata

9.运行 jar 文件

命令:hadoop jar wc.jar com.software.hadoop.mr.wordcount.WCRunner

此命令为  hadoop jar wc.jar 加上 WCRunner类的全类名,程序的入口为 WCRunner 内的 main 方法,运行完此命令便可以看到输出日志信息:

然后前去我们之前配置的存放输出结果的路径(楼主之前设置的为:/wc/output/)就可以看到 MapReduce 的执行结果了

输入命令:hadoop fs -ls /wc/output/  查看以下 /wc/output/ 路径下的内容

结果数据就在第二个文件中,输入命令:hadoop fs -cat /wc/output/part-r-00000   即可查看:

至此我们的这个小应用就完成了,是不是很有意思的,楼主在实现的时候还是发生了一点小意外:

楼主查阅资料发现这是由于 jdk 版本不一致导致的错误,统一 jdk 版本后便没有问题了。

MapReduce 入门之一步步自实现词频统计功能的更多相关文章

  1. Java实现的词频统计——功能改进

    本次改进是在原有功能需求及代码基础上额外做的修改,保证了原有的基础需求之外添加了新需求的功能. 功能: 1. 小文件输入——从控制台由用户输入到文件中,再对文件进行统计: 2.支持命令行输入英文作品的 ...

  2. awk词频统计功能

    [root@test88 ~]# vim word_freq.sh #!/bin/bash if [ $# -ne 1 ];then echo "Usage: $0 filename&quo ...

  3. 使用HDFS完成wordcount词频统计

    任务需求 统计HDFS上文件的wordcount,并将统计结果输出到HDFS 功能拆解 读取HDFS文件 业务处理(词频统计) 缓存处理结果 将结果输出到HDFS 数据准备 事先往HDFS上传需要进行 ...

  4. 如何用java完成一个中文词频统计程序

    要想完成一个中文词频统计功能,首先必须使用一个中文分词器,这里使用的是中科院的.下载地址是http://ictclas.nlpir.org/downloads,由于本人电脑系统是win32位的,因此下 ...

  5. 软工之词频统计器及基于sketch在大数据下的词频统计设计

    目录 摘要 算法关键 红黑树 稳定排序 代码框架 .h文件: .cpp文件 频率统计器的实现 接口设计与实现 接口设计 核心功能词频统计器流程 效果 单元测试 性能分析 性能分析图 问题发现 解决方案 ...

  6. 使用Storm进行词频统计

    词频统计 1.需求:读取指定目录的数据,并且实现单词计数功能 2.实现方案: Spout用于读取指定文件夹(目录),读取文件,将文件的每一行发射到Bolt SplitBolt用于接收Spout发射过来 ...

  7. MapReduce词频统计

    自定义Mapper实现 import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; impor ...

  8. MapReduce实现词频统计

    问题描述:现在有n个文本文件,使用MapReduce的方法实现词频统计. 附上统计词频的关键代码,首先是一个通用的MapReduce模块: class MapReduce: __doc__ = ''' ...

  9. map-reduce入门

    map-reduce入门 近期在改写mahout源代码,感觉自己map-reduce功力不够深厚,因此打算系统学习一下. map-reduce事实上是一种编程范式,从统计词频(wordCount)程序 ...

随机推荐

  1. 张高兴的 Windows 10 IoT 开发笔记:ToF Sensor VL53L0X

    GitHub : https://github.com/ZhangGaoxing/windows-iot-demo/tree/master/VL53L0X

  2. 转:用STL中的vector动态开辟二维数组

    用STL中的vector动态开辟二维数组 源代码:#include <iostream>#include <vector>using namespace std;int mai ...

  3. sharepoint 创建个人网站

    One of the SharePoint 2013 puzzle pieces which got some major improvements are My Sites, User Profil ...

  4. IO 调优

    磁盘优化 1.增加缓存 2.优化磁盘的管理系统 3.设计合理的磁盘存储数据块 4.应用合理的RAID策略 TCP网络参数调优 网络IO优化 1.减少网络交互次数 2.减少网络传输数据量的大小 3.尽量 ...

  5. MongoDB关系与数据库引用

    MongoDB关系: MongoDB 的关系表示多个文档之间在逻辑上的相互联系.文档间可以通过嵌入和引用来建立联系. 1. 嵌入关系: 形式:把一个文档嵌入到另一个文档中. 优点:数据保存在单一的文档 ...

  6. Dagger2 入门解析

    前言 在为dropwizard选择DI框架的时候考虑了很久.Guice比较成熟,Dagger2主要用于Android.虽然都是google维护的,但Dagger2远比guice更新的频率高.再一个是, ...

  7. Ubuntu远程登陆、SSH图形界面、WOL远程唤醒

    本文为作者原创,转载请注明出处(http://www.cnblogs.com/mar-q/)by 负赑屃 实现目标:通过路由器配置路由路径,将拨号获取的公网IP地址指向局域网Ubuntu服务器.家里有 ...

  8. Python 之简单线程池创建

    try: from Queue import Queue, Empty except: from queue import Queue, Empty import threading import t ...

  9. 搭建yeoman自动化构建工具

    yeoman可以快速的搭建一个项目的手脚架,初次接触yeoman,在搭建的过程中遇到了很多的问题. yeoman需要node.js(http://nodejs.org)和git(http://git- ...

  10. IdentityServer4 指定角色授权(Authorize(Roles="admin"))

    1. 业务场景 IdentityServer4 授权配置Client中的AllowedScopes,设置的是具体的 API 站点名字,也就是使用方设置的ApiName,示例代码: //授权中心配置 n ...