参考了 https://zhuanlan.zhihu.com/p/24853767

安装caffe的依赖项

brew install --fresh -vd snappy leveldb gflags glog szip lmdb opencv hdf5
brew install --build-from-source --with-python --fresh -vd protobuf
brew install --build-from-source --fresh -vd boost boost-python

安装caffe

git clone https://github.com/BVLC/caffe.git
cd caffe
cp Makefile.config.example Makefile.config

Makefile.config的内容如下

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1 # CPU-only switch (uncomment to build without GPU support).
CPU_ONLY := 1 # uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr # CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_52,code=sm_52 \
-gencode arch=compute_60,code=sm_60 \
-gencode arch=compute_61,code=sm_61 \
-gencode arch=compute_61,code=compute_61 # BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
# ANACONDA_HOME := $(HOME)/anaconda
# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
# $(ANACONDA_HOME)/include/python2.7 \
# $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include # Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib # NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := 1 # Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1 # N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0 # enable pretty build (comment to see full commands)
Q ?= @

进行编译测试

make all
make test
make runtest

配置python接口

for req in $(cat python/requirements.txt); do pip install $req; done
make pycaffe
make distribute

测试helloworld程序

import sys
caffe_root = '/usr/local/Cellar/caffe/'
# this is your own address
sys.path.insert(0, caffe_root + 'python') import caffe a = 2
print(a)

caffe Mac 安装的更多相关文章

  1. 20160512关于mac安装caffe的记录

    记得2015年在mac系统上安装过一次caffe,非常顺利,但是最近群里许多同学反映mac安装caffe出现了各种问题,同时我也在帮助别人安装caffe的时候也遇到了一些坑,不再像以前这么顺利了.估计 ...

  2. mac安装tensorflow报错

    问题:mac安装tensorflow过程中,爆出oserror:permission denied 解决方案:关闭mac的sip,然后sudo安装 关闭sip的方法:重启mac,按住command+R ...

  3. Mac 安装activate-power-mode atom

    Mac 安装activate-power-mode atom 标签: atommac 2015-12-02 14:53 308人阅读 评论(0) 收藏 举报  分类: git(2)  版权声明:本文为 ...

  4. 浅析py-faster-rcnn中不同版本caffe的安装及其对应不同版本cudnn的解决方案

    浅析py-faster-rcnn中不同版本caffe的安装及其对应不同版本cudnn的解决方案 本文是截止目前为止最强攻略,按照本文方法基本可以无压力应对caffe和Ross B. Girshick的 ...

  5. Mac安装ctags

    Mac安装ctags mac 系统有自带的ctags,但是不支持"ctags -R"指令,需要自己在安装Exuberant Ctags 1.下载ctags 2. 安装 ./conf ...

  6. [转]Centos7下caffe的安装

    Centos7下caffe的安装 原文地址:http://blog.csdn.net/s2392735818/article/details/49796017   版权声明:本文为博主原创文章,未经博 ...

  7. 转 Windows+VS2013爆详细Caffe编译安装教程

    1. 安装cuda Cuda是英伟达推出的GPU加速运算平台 我这里安装的是cuda7.5,已经安装过的忽略,还没有安装过的这里有安装教程.windows下面安装还是非常简单的. 点击打开链接    ...

  8. ubuntu 安装 swoole 和mac 安装swoole 扩展

    ubuntu php 安装swoole 比较容易 1. 从git下载源码 2. 下载pcre http://sourceforge.net/projects/pcre/files/pcre/8.36/ ...

  9. [Scrapy] Mac安装Scrapy

    Mac安装Scrapy Mac版本 10.11 El Captain. 前一段想在Mac上用Scrapy,各种问题.有一个不错的工具:Anaconda. 安装Anaconda 下载地址 我还是下pyt ...

随机推荐

  1. Mac python3.5 + Selenium 开发环境配置

    一. python 3.5 1. 下载 2. Mac默认为2.7,所以这里主要介绍如何将系统Python默认修改为3.5. 原理: 1)Mac自带的python环境在: python2.7: /Sys ...

  2. C#和C++的Socket通信

    最近在用C#做一个项目的时候,Socket发送消息的时候遇到了服务端需要接收C++结构体的二进制数据流,这个时候就需要用C#仿照C++的结构体做出一个结构来,然后将其转换成二进制流进行发送,之后将响应 ...

  3. spring加载属性(properties)文件

    一.注解方式加载 jdbc.driver=org.mariadb.jdbc.Driver jdbc.url=jdbc:mariadb://localhost:3306/kt jdbc.user=roo ...

  4. Jmeter--thrift接口压测

    1. 安装thrift 2. 新建maven工程,代码结构如下 3. pom设置,按配置存放thrift文件和打包描述文件(具体代码见附件,根据需要改变配置信息) 4. thrift需要手动添加nam ...

  5. MVC验证码生成类库

    public class ValidateCode { /// <summary> /// 验证码的最大长度 /// </summary> public int MaxLeng ...

  6. java项目如何使用ajax来减少页面的刷新

    之前写项目,总是用重定向或请求转发,导致每做一步动作就会刷新页面,客户体验不好,而且效率低下,这种问题可以使用ajax来有效的解决此类问题的发生. 我使用的框架:Spring boot 数据库:mys ...

  7. iOS:文件操作相关(18-03-23更)

    0.iOS文件系统 1.工程内文件 2.文件夹管理 3.文件操作 4.NSCache 附录: 1.沙盒文件夹.文件大小 2.清除沙盒 Library / Cache 下所有数据 3.测试plist 0 ...

  8. python函数基本介绍

    函数 1.函数结构 def 是函数的定义关键字,my_len是函数名.()传参用,冒号下面都是函数体. 执行函数方法:函数名加括号来执行函数.My_len() 举例: # s = 'lkfjsjulk ...

  9. UIPickerView的简单使用

    UIPickerView是一个选择器它可以生成单列的选择器,也可生成多列的选择器,而且开发者完全可以自定义选择项的外观,因此用法非常灵活,使用也比较简单.下面做了一个关于天气预报的小Demo 用 UI ...

  10. php的基础知识(三)

    12.函数: 函数的功能: 定义:在真实的项目开发过程中,有些代码会重复利用,我们可以把它提出来,做成公共的代码,供团队来使用,这个我们封装的代码段,就是函数(功能). 优点: 1.提高代码的利用率. ...