有关概念:

  最短路问题:若在图中的每一条边都有对应的权值,求从一点到另一点之间权值和最小的路径

  SPFA算法的功能是求固定起点到图中其余各点的的最短路(单源最短路径)

  约定:图中不存在负权环,用邻接表存储有向图,di存放从起点到结点i的最短路,q为队列,保存待处理节点

思路:

  首先指定起点入队,取当前队头结点u,沿每一条与u相连的边向外扩展,对该边所指向的结点v松弛(比较当前dv与当前du加此边长,更新最短路值dv,以及最短路径prev)如果v不在队列中且更新了最短路值,v进队,直至队列中没有元素时终止

  较于Dijkstra,SPFA能处理带负权的边,但如果点进队的次数过多,时间效率就不如前者高

 #include<cstdio>
#include<cstring>
#define MAXN
#define MAXM
#define INF 214748364
int n,m,cnt,d[MAXN],heads[MAXN],q[MAXN],pre[MAXN];
int head,tail;//队头、队尾指针
bool viss[MAXN];//结点i是否在队列中
struct node
{
int u,v;
int next;
int val;
}edge[MAXM];
void add(int x,int y,int z)
{
edge[++cnt].u=x;
edge[cnt].v=y;
edge[cnt].next=heads[x];
edge[cnt].val=z;
heads[x]=cnt;
}
void SPFA()
{
head=;tail=;
q[]=;
viss[]=;//默认1为起点
while(head<tail)
{
for(int i=heads[q[head]];i!=;i=edge[i].next)
{
if(d[q[head]]+edge[i].val<d[edge[i].v])
{
d[edge[i].v]=d[q[head]]+edge[i].val;//松弛
pre[edge[i].v]=i;//记录最短路径,pre存储边的序号
if(!viss[edge[i].v])//如果v不在队列中,入队
{
q[tail++]=edge[i].v;
viss[edge[i].v]=true;
}
}
}
viss[q[head]]=false;
head++;//队头出队
}
}
void print(int x)
{
if(edge[x].u==)
{
printf("%d %d ",,edge[x].v);
return ;
}
print(pre[edge[x].u]);
printf("%d ",edge[x].v);
}
int main()
{
scanf("%d%d",&n,&m);
memset(heads,,sizeof(heads));
for(int i=;i<=n;i++)d[i]=INF;
int x,y,z;
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
add(y,x,z);//默认输入双向边,所以存储两条方向相反的边
}
SPFA();
printf("%d\n",d[n]);
x=pre[n];
print(x);//输出路径
return ;
}

*参考:http://baike.baidu.com/link?url=FxZ5Ces0YdAHMPmVyJG7f_wJ9-8c6EHreyuDEfHpXsldfk-rfj7ZjtSETKX5Jp14WW28sutbf5zcnLSBcmKzM9zaUVD1Sn9WCwsidDVUhPnSX__1ukG38VjR5g5-5NvK_fjovt-kZIJ1bC4HK1MaBa

图论-单源最短路-SPFA算法的更多相关文章

  1. 单源最短路——SPFA算法(Bellman-Ford算法队列优化)

    spfa的算法思想(动态逼近法):     设立一个先进先出的队列q用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路 ...

  2. 单源最短路SPFA算法

    $huaji^{233……}$模板:洛谷 P3371 #include<iostream> #include<algorithm> #include<cstdio> ...

  3. 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)

    关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...

  4. 单源最短路——Bellman-Ford算法

    1.Dijkstra的局限性 Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的. 列如以 ...

  5. 单源最短路——dijkstra算法

    Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 问 ...

  6. 单源最短路 Bellman-Ford算法(有向图)

    // 单源最短路问题 // Bellman-Ford算法 // 复杂度O(V*E) //! 可以判断负圈 #include <cstdio> #include <iostream&g ...

  7. 单源最短路dijkstra算法&&优化史

    一下午都在学最短路dijkstra算法,总算是优化到了我能达到的水平的最快水准,然后列举一下我的优化历史,顺便总结总结 最朴素算法: 邻接矩阵存边+贪心||dp思想,几乎纯暴力,luoguTLE+ML ...

  8. 单源最短路Dijkstra算法——matlab实现

    迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止. 基本思想 通过Dijk ...

  9. 单源最短路(Dijkstra算法)

    #返回上一级 @Author: 张海拔 @Update: 2015-03-11 @Link: http://www.cnblogs.com/zhanghaiba/p/3514570.html Dijk ...

随机推荐

  1. javascript中的this作用域详解

    javascript中的this作用域详解 Javascript中this的指向一直是困扰我很久的问题,在使用中出错的机率也非常大.在面向对象语言中,它代表了当前对象的一个引用,而在js中却经常让我觉 ...

  2. Oracle 验证A表的2个字段组合不在B表2个字段组合里的数据

    select id, name from TAB_A t where not exists (select 1 from TAB_B t1 where t.id = t1.id and t.name ...

  3. [BZOJ2067]szn

    description BZOJ权限题. solution 一道非常好的二分+贪心题目. 第一问就是\(\frac{\sum_u(deg[u]-1)}{2}+1\). 第二问需要在方案最优的情况下最长 ...

  4. 模板:数论 & 数论函数 & 莫比乌斯反演

    作为神秘奖励--?也是为了方便背. 所有的除法都是向下取整. 数论函数: \((f*g)(n)=\sum_{d|n}f(d)g(\frac{n}{d})\) \((Id*\mu)(n)=\sum_{d ...

  5. HDOJ(HDU).1114 Piggy-Bank (DP 完全背包)

    HDOJ(HDU).1114 Piggy-Bank (DP 完全背包) 题意分析 裸的完全背包 代码总览 #include <iostream> #include <cstdio&g ...

  6. HDU 2083(排序+绝对值+中间值求和)

    简易版之最短距离 点我跳转到HDOJ Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...

  7. IE下textarea去除回车换行符

    在textarea中回车,会产生转义字符\r\n,有些时候我们不需要这两个转移字符,也就是清空textarea.下面的方法并不是清空,但是能够起到差不多的效果. 如果在textarea中按回车,内容提 ...

  8. JS传递中文参数出现乱码的解决办法

    一.window.open() 乱码: JS中使用window.open("url?param="+paramvalue)传递参数出现乱码,提交的时候,客户端浏览器URL中显示参数 ...

  9. VC对话框实现添加滚动条实现滚动效果

    对话框滚动条及滚动效果实现,用的api主要有: ScrollWindow, SetScrollInfo, GetScrollInfo, SetWindowOrgEx.涉及的数据结构为SCROLLINF ...

  10. redis 查看所有键值

    zb@zb-computer:/home/wwwroot/default/lion/Admin$ /usr/local/redis/bin/redis-cli 127.0.0.1:6379> k ...