【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=2705

【题目大意】

  求出∑gcd(i,N)(1<=i<=N)

【题解】

  $∑_{i=1}^{N}gcd(i,N)$
  $=∑_{i=1}^{N}∑_{d|gcd(i,N)}\phi(d)$
  $=∑ \phi(d)∑ _{1=<i<=N \land d|i \land d|N}1$
  $=∑_{d|N}\phi(d)\lfloor\frac{i}{d}\rfloor$

【代码】

#include <cstdio>
#include <algorithm>
using namespace std;
int Euler(int n){
int t=1,i;
if(!(n&1))for(n>>=1;!(n&1);n>>=1,t<<=1);
for(i=3;i*i<=n;i+=2)if(n%i==0)for(n/=i,t*=i-1;n%i==0;n/=i,t*=i);
if(n>1)t*=n-1;
return t;
}
int main(){
int n;
long long ans=0;
while(~scanf("%d",&n)){
for(int i=1;i*i<=n;i++){
if(n%i==0){
ans+=1LL*i*Euler(n/i);
if(i*i<n)ans+=1LL*(n/i)*Euler(i);
}
}printf("%lld\n",ans);
}return 0;
}

BZOJ 2705 [SDOI2012]Longge的问题(欧拉函数)的更多相关文章

  1. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  2. Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][ ...

  3. bzoj 2705 [SDOI2012]Longge的问题——欧拉函数大水题

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2705 撕逼题.不就是枚举gcd==d,求和phi[ n/d ]么. 然后预处理sqrt (n ...

  4. bzoj 2705: [SDOI2012]Longge的问题 歐拉函數

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1035  Solved: 669[Submit][S ...

  5. 【bzoj2705】[SDOI2012]Longge的问题 欧拉函数

    题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 输入 一个整数,为N. 输出 ...

  6. BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)

    题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理 ...

  7. [SDOI2012] Longge的问题 - 欧拉函数

    求 \(\sum\limits_{i=1}^{n}gcd(i,n)\) Solution 化简为 \(\sum\limits_{i|n}^{n}φ(\dfrac{n}{i})i\) 筛出欧拉函数暴力求 ...

  8. BZOJ 2705: [SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2554  Solved: 1566[Submit][ ...

  9. BZOJ 2705: [SDOI2012]Longge的问题 GCD

    2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...

  10. BZOJ 2705: [SDOI2012]Longge的问题( 数论 )

    T了一版....是因为我找质因数的姿势不对... 考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了. 但是我们可以做的更好 ...

随机推荐

  1. Maven学习笔记(一)

    我们暂且可以把Maven理解成是一个项目构建与依赖管理的工具   为什么选用maven? 约定(惯例)优先原则,默认限定了项目目录结构 提供三方依赖管理(解决了依赖维护的问题) 提供了一致的项目构建管 ...

  2. Tomcat的安装以及基本配置

    Tomcat是目前最常见也是最流行的基于java的一个web服务器软件   Tomcat的安装   (1)首先需要java环境,也就是说要依赖于java虚拟机JVM   (2)下载Tomcat ,地址 ...

  3. [device tree] How to decompile a compiled .dtb (device tree blog) into .dts (device tree source).

    $ ./out/target/product/project_name/obj/KERNEL_OBJ/scripts/dtc/dtc -I dtb -O dts -o decompiled.dts ~ ...

  4. Python 如何将字符串转为字典

    在工作中遇到一个小问题,需要将一个 python 的字符串转为字典,比如字符串: user_info = '{"name" : "john", "ge ...

  5. C基础 多用户分级日志库 sclog

    引言 - sclog 总的设计思路 sclog在之前已经内置到simplec 简易c开发框架中一个日志库. 最近对其重新设计了一下. 减少了对外暴露的接口. 也是C开发中一个轮子. 比较简单, 非常适 ...

  6. (转)关于bootstrap, boosting, bagging,Rand forest

    转自:https://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, ...

  7. 如何在苹果官网下载旧版本的Xcode

    如何在苹果官网下载旧版本的Xcode 前段时间XcodeGhost事件让很多应用中招,不乏一些知名的互联网公司开发的应用.事件的起因是开发者使用了非官方的Xcode,这些Xcode带有xcodegho ...

  8. JS常用操作方法

    1.splice() 方法向/从数组中添加/删除项目,然后返回被删除的项目. 注释:该方法会改变原始数组. 1 <script type="text/javascript"& ...

  9. C# 笔记——数据类型

    一张图读懂C#数据类型:

  10. python_day7学习笔记

    类 1)创建一个类 #coding=utf-8 __author__ = 'Administrator' class Employee: '所有员工的基类' empCount = 0 def __in ...