Codeforces Round #433 (Div. 2, based on Olympiad of Metropolises) D. Jury Meeting(双指针模拟)
1 second
512 megabytes
standard input
standard output
Country of Metropolia is holding Olympiad of Metrpolises soon. It mean that all jury members of the olympiad should meet together in Metropolis (the capital of the country) for the problem preparation process.
There are n + 1 cities consecutively numbered from 0 to n. City 0 is Metropolis that is the meeting point for all jury members. For each city from 1 to n there is exactly one jury member living there. Olympiad preparation is a long and demanding process that requires k days of work. For all of these k days each of the n jury members should be present in Metropolis to be able to work on problems.
You know the flight schedule in the country (jury members consider themselves important enough to only use flights for transportation). All flights in Metropolia are either going to Metropolis or out of Metropolis. There are no night flights in Metropolia, or in the other words, plane always takes off at the same day it arrives. On his arrival day and departure day jury member is not able to discuss the olympiad. All flights in Megapolia depart and arrive at the same day.
Gather everybody for k days in the capital is a hard objective, doing that while spending the minimum possible money is even harder. Nevertheless, your task is to arrange the cheapest way to bring all of the jury members to Metrpolis, so that they can work together for kdays and then send them back to their home cities. Cost of the arrangement is defined as a total cost of tickets for all used flights. It is allowed for jury member to stay in Metropolis for more than k days.
The first line of input contains three integers n, m and k (1 ≤ n ≤ 105, 0 ≤ m ≤ 105, 1 ≤ k ≤ 106).
The i-th of the following m lines contains the description of the i-th flight defined by four integers di, fi, ti and ci (1 ≤ di ≤ 106, 0 ≤ fi ≤ n, 0 ≤ ti ≤ n, 1 ≤ ci ≤ 106, exactly one of fi and ti equals zero), the day of departure (and arrival), the departure city, the arrival city and the ticket cost.
Output the only integer that is the minimum cost of gathering all jury members in city 0 for k days and then sending them back to their home cities.
If it is impossible to gather everybody in Metropolis for k days and then send them back to their home cities, output "-1" (without the quotes).
2 6 5
1 1 0 5000
3 2 0 5500
2 2 0 6000
15 0 2 9000
9 0 1 7000
8 0 2 6500
24500
2 4 5
1 2 0 5000
2 1 0 4500
2 1 0 3000
8 0 1 6000
-1
The optimal way to gather everybody in Metropolis in the first sample test is to use flights that take place on days 1, 2, 8 and 9. The only alternative option is to send jury member from second city back home on day 15, that would cost 2500 more.
In the second sample it is impossible to send jury member from city 2 back home from Metropolis.
【题意】有n+1个城市,每个城市都有一个人,他们要去0城市参加活动,一起待k天,然后再回来,你可以提前去也可以延后回去,问 你能不能使所有人一起待k天,可以的话,最小花费是多少?
【题解】将航班分为两部分(去和回来),然后找到两个极限位置L,R,去的航班在L之前都没法使得左右人到达,回来的人在R之后 不会全部都回来,然后双指针,维护区间长度>=k,但是要预处理,对于前L,mn[0][i]表示前L个航班从i城市出发到达0城市的最小花费,
然后对于回来的航班,mn[1][i]表示所有从L航班及之前出发的都能回来的航班中回到i城市的最小花费,然后全部加进ans,然后在双指针的过程中不断地更新mn[0][i],mn[1][i],取ans最小值即可。
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
#define mp make_pair
#define rep(i,l,r) for(int i=(l);i<=(r);++i)
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int N = 1e5+;;
const int M = ;
const int mod = ;
const int mo=;
const double pi= acos(-1.0);
typedef pair<int,int>pii;
ll qpow(int x,int qq){ll f=,p=x;while(qq){if(qq&)f=f*p%mod;p=1LL*p*p%mod;qq>>=;}}
int n,m,k;
int mn[][N];
bool vis[N];
multiset<int>s[N];
struct man{
int d,f,t,c;
}arrive[N],depart[N];
bool cmp(const man &a,const man &b){return a.d<b.d;};
int main(){
for(int i=;i<N;i++)mn[][i]=mn[][i]=;
int cnt1=,cnt2=,cnt=,L=-,R=-;
scanf("%d%d%d",&n,&m,&k);
while(m--){
int d,f,t,c;
scanf("%d%d%d%d",&d,&f,&t,&c);
if(!f)depart[++cnt2]=man{d,f,t,c};
if(!t)arrive[++cnt1]=man{d,f,t,c};
}
sort(arrive+,arrive++cnt1,cmp);
sort(depart+,depart++cnt2,cmp);
for(int i=;i<=cnt1;i++){
mn[][arrive[i].f]=min(mn[][arrive[i].f],arrive[i].c);
if(!vis[arrive[i].f]){
vis[arrive[i].f]=true;
cnt++;
}
if(cnt==n){
L=i;
break;
} }
int l=L,r;
met(vis,false);cnt=;
for(int i=cnt2;i>=;i--){
if(depart[i].d<arrive[L].d+k+)break;
mn[][depart[i].t]=min(mn[][depart[i].t],depart[i].c);
s[depart[i].t].insert(depart[i].c);
r=i;
if(!vis[depart[i].t]){
vis[depart[i].t]=true;
cnt++;
}
if(cnt==n&&R==-){
R=i;
}
}
ll ans=,res;
for(int i=;i<=n;i++){
ans+=mn[][i]+mn[][i];
}
res=ans;
while(){
if(arrive[l].d+k+>depart[R].d||r>R||l>=cnt1)break;
while(arrive[l].d+k+<=depart[r].d&&l<cnt1){
l++;
if(arrive[l].c<mn[][arrive[l].f]){
ans-=(mn[][arrive[l].f]-arrive[l].c);
mn[][arrive[l].f]=arrive[l].c;
}
if(arrive[l].d+k+<=depart[r].d)res=min(res,ans);
} while(depart[r].d<arrive[l].d++k&&r<R){
r++;
s[depart[r-].t].erase(s[depart[r-].t].find(depart[r-].c));
ans-=(mn[][depart[r-].t]-*s[depart[r-].t].begin());
mn[][depart[r-].t]=*s[depart[r-].t].begin();
if(arrive[l].d+k+<=depart[r].d)res=min(res,ans);
}
}
if(L==-||R==-)puts("-1");
else if(depart[R].d-arrive[L].d>=k+)printf("%lld\n",res);
else puts("-1");
return ;
}
Codeforces Round #433 (Div. 2, based on Olympiad of Metropolises) D. Jury Meeting(双指针模拟)的更多相关文章
- Codeforces Round #433 (Div. 2, based on Olympiad of Metropolises)
A. Fraction 题目链接:http://codeforces.com/contest/854/problem/A 题目意思:给出一个数n,求两个数a+b=n,且a/b不可约分,如果存在多组满足 ...
- Codeforces Round #433 (Div. 2, based on Olympiad of Metropolises) D
Country of Metropolia is holding Olympiad of Metrpolises soon. It mean that all jury members of the ...
- Codeforces Round #433 (Div. 2, based on Olympiad of Metropolises) C
Helen works in Metropolis airport. She is responsible for creating a departure schedule. There are n ...
- Codeforces Round #433 (Div. 2, based on Olympiad of Metropolises) B
Maxim wants to buy an apartment in a new house at Line Avenue of Metropolis. The house has n apartme ...
- Codeforces Round #433 (Div. 2, based on Olympiad of Metropolises) A
Petya is a big fan of mathematics, especially its part related to fractions. Recently he learned tha ...
- Codeforces Round #507 (Div. 2, based on Olympiad of Metropolises) D mt19937
https://codeforces.com/contest/1040/problem/D 用法 mt19937 g(种子); //种子:time(0) mt19937_64 g(); //long ...
- 【Codeforces Round #507 (Div. 2, based on Olympiad of Metropolises) B】Shashlik Cooking
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 翻转一次最多影响2k+1个地方. 如果n<=k+1 那么放在1的位置就ok.因为能覆盖1..k+1 如果n<=2k+1 ...
- 【Codeforces Round #507 (Div. 2, based on Olympiad of Metropolises) A】Palindrome Dance
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] i从1..n/2循环一波. 保证a[i]和a[n-i+1]就好. 如果都是2的话填上min(a,b)*2就好 其他情况跟随非2的. ...
- Codeforces Round #403 (Div. 2, based on Technocup 2017 Finals) B. The Meeting Place Cannot Be Changed
地址:http://codeforces.com/contest/782/problem/B 题目: B. The Meeting Place Cannot Be Changed time limit ...
随机推荐
- Makefile $@,$^,$ 作用
/* main.c */ #include "mytool1.h" #include "mytool2.h" int ...
- SPOJ AMR11E Distinct Primes 基础数论
Arithmancy is Draco Malfoy's favorite subject, but what spoils it for him is that Hermione Granger i ...
- PAT (Advanced Level) 1007. Maximum Subsequence Sum (25) 经典题
Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, ...
- Spring基础使用(一)--------IOC、Bean的XML方式装配
基础 1.xml文件基础格式: <?xml version="1.0" encoding="UTF-8" ?> <beans xmlns=&q ...
- 3.0docker操作
登录镜像资源 docker login daocloud.io username: password: docker login : 登陆到一个Docker镜像仓库,如果未指定镜像仓库地址,默认为官方 ...
- LCD实验学习笔记(十):TFT LCD
硬件组成: REGBANK是LCD控制寄存器组,含17个寄存器及一块256*16的调色板,用来设置参数. LCDCDMA中有两个FIFO,当FIFO空或数据减少到阈值,自动发起DMA传输,从内存获取图 ...
- centos_7.1.1503_src_1
http://vault.centos.org/7.1.1503/os/Source/SPackages/ 389-ds-base-1.3.3.1-13.el7.src.rpm 31-Mar-2015 ...
- python设计模式之单例模式(一)
单例设计模式的概念: 单例设计模式即确保类有且只有一个特定类型的对象,并提供全局访问点.一般我们操作数据库的时候为了避免统一资源产生互相冲突,创建单例模式可以维护数据的唯一性. 单例模式的特性: 确保 ...
- JAVA常见的集合类
关系的介绍: Set(集):集合中的元素不按特定方式排序,并且没有重复对象.他的有些实现类能对集合中的对象按特定方式排序. List(列表):集合中的元素按索引位置排序,可以有重复对象,允许按照对象在 ...
- iOS一个项目开始创建, 部署到git服务器
在做iOS开发时, 最开始可能你的经理部署项目, 所以你不会插手, 只是直接从git上clone下来然后就开始撸码, 如果有一天你做经理了, 你怎么去部署一个项目呢, 下面我来过一遍流程 1. 首先需 ...