【Bzoj3527】【Luogu3338】[Zjoi2014]力(FFT)
题面
题解
先来颓柿子
$$ F_i=\sum_{j<i}\frac{q_iq_j}{(i-j)^2}-\sum_{j>i}\frac{q_iq_j}{(i-j)^2} \\=q_i(\sum_{j<i}\frac{q_j}{(i-j)^2}-\sum_{j>i}\frac{q_j}{(i-j)^2}) $$
所以
$$ E_i=\sum_{j<i}\frac{q_j}{(i-j)^2}-\sum_{j>i}\frac{q_j}{(j-i)^2} $$
令$x_i=\frac{1}{i^2}$
则原式可化为:
$$ E_i=\sum_{j=0}^{i}q_jx_{i-j}-\sum_{j=i+1}^{n-1}q_jx_{j-i} $$
令$p_{n-j-1}=q_j$所以原式又等于
$$ E_i=\sum_{j=0}^{i}q_jx_{i-j}-\sum_{j=i}^{n-1}p_{n-j-1}x_{j-i} \\=\sum_{j=0}^{i}q_jx_{i-j}-\sum_{j=0}^{n-i-1}p_{n-j-i-1}x_{j} $$
然后就变成两个卷积相减了吧。(为了方便,先将$n$减去$1$):
#include <cmath>
#include <cstdio>
#include <algorithm>
using std::swap;
const int N = 3e5 + 10;
const double Pi = acos(-1);
int n, m, r[N], P;
struct C { double x, y; } q[N], p[N], x[N];
C operator + (C a, C b) { return (C){ a.x + b.x, a.y + b.y }; }
C operator - (C a, C b) { return (C){ a.x - b.x, a.y - b.y }; }
C operator * (C a, C b) { return (C){ a.x * b.x - a.y * b.y, a.x * b.y + b.x * a.y }; }
void FFT(C f[], int opt) {
for(int i = 0; i < n; ++i) if(i < r[i]) swap(f[i], f[r[i]]);
for(int len = 1, nl = 2; len < n; len = nl, nl <<= 1) {
C rot = (C){cos(Pi / len), opt * sin(Pi / len)};
for(int l = 0; l < n; l += nl) {
C w = (C){1, 0}; int r = l + len;
for(int k = l; k < r; ++k, w = w * rot) {
C x = f[k], y = w * f[k + len];
f[k] = x + y, f[k + len] = x - y;
}
}
}
}
int main() {
scanf("%d", &n); int tmp = (--n); m = n << 1;
for(int i = 0; i <= n; ++i) scanf("%lf", &q[i].x), p[n - i].x = q[i].x;
for(int i = 1; i <= n; ++i) x[i].x = (double)1.0 / i / i;
for(n = 1; n <= m; n <<= 1, ++P);
for(int i = 0; i < n; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (P - 1));
FFT(q, 1), FFT(p, 1), FFT(x, 1);
for(int i = 0; i < n; ++i) q[i] = q[i] * x[i], p[i] = p[i] * x[i];
FFT(q, -1), FFT(p, -1);
for(int i = 0; i <= tmp; ++i)
printf("%.3lf\n", q[i].x / n - p[tmp - i].x / n);
return 0;
}
【Bzoj3527】【Luogu3338】[Zjoi2014]力(FFT)的更多相关文章
- 【bzoj3527】[Zjoi2014]力 FFT
2016-06-01 21:36:44 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 我就是一个大傻叉 微笑脸 #include&l ...
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- 【BZOJ】3527: [Zjoi2014]力 FFT
[参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...
- P3338 [ZJOI2014]力(FFT)
题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...
- 【BZOJ3527】[ZJOI2014] 力(FFT)
题目: BZOJ3527 分析: FFT应用第一题-- 首先很明显能把\(F_j\)约掉,变成: \[E_j=\sum _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- [BZOJ3527][ZJOI2014]力 FFT+数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 首先卷积的形式是$h(i)=\sum_{i=0}^jf(i)g(i-j)$,如果我们 ...
- BZOJ3527[Zjoi2014]力——FFT
题目描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<100000 ...
- 【bzoj3527】 Zjoi2014—力
http://www.lydsy.com/JudgeOnline/problem.php?id=3527 (题目链接) 题意 $${F_i=\sum_{j<i} {\frac{q_iq_j}{( ...
- BZOJ 3527: [Zjoi2014]力(FFT)
我们看一下这个函数,很容易就把他化为 E=sigma(aj/(i-j)/(i-j))(i>j)-sigma(aj/(i-j)/(i-j))(j>i) 把它拆成两半,可以发现分子与分母下标相 ...
- [ZJOI2014]力 FFT
题面 题解: \[F_j = \sum_{i < j}\frac{q_iq_j}{(i - j)^2} - \sum_{i > j}{\frac{q_iq_j}{(i - j)^2}}\] ...
随机推荐
- 51Nod 1031 骨牌覆盖 | Fibonacci
Input 输入N(N <= 1000) Output 输出数量 Mod 10^9 + 7 Input示例 3 Output示例 3 思路:对于第x块骨牌的情况,我们用a[x]表示其方法数:其比 ...
- c# 设置和取消文件夹共享及执行Dos命令
/// <summary> /// 设置文件夹共享 /// </summary> /// <param name="FolderPath">文件 ...
- 【BZOJ】1299: [LLH邀请赛]巧克力棒
[算法]博弈论 [题解]这道题不是典型的SG函数题了. 不把它当成游戏看待,那么这道题是在说n个石子堆,每次可以加入若干个或进行Nim游戏. 我们当前先手,则考虑构造必败态来获胜. 当前已加入的NIm ...
- 2017ACM暑期多校联合训练 - Team 1 1002 HDU 6034 Balala Power! (字符串处理)
题目链接 Problem Description Talented Mr.Tang has n strings consisting of only lower case characters. He ...
- querySelector()与querySelectorAll()
1.querySelector() 参数:css选择器 返回匹配指定css选择器元素的第一个子元素 2.querySelectorAll() 参数:css选择器 返回匹配指定css选择器的所有元素
- Bit banging
Bit banging Bit banging is a technique for serial communications using software instead of dedicated ...
- python实战===一键刷屏
#当按键q的时候,自动输入 “大家好!”并回车键发送!from pynput import keyboard from pynput.keyboard import Key, Controller k ...
- 1438. Shopaholic
Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description Lindsay is a shopaholic. Whenever th ...
- 【数位dp入门】【HDU4734】F(x)
记录减的状态,表示还要凑多少才能达到当前值. 然后进行枚举即可.注意状态数不能重复. #include<bits/stdc++.h> #define N 10010 using names ...
- 关于springMVC转换json出现的异常
jackson-core-asl-1.9.0.jar,jackson-mapper-asl-1.9.0.jar两个包 并且在controller中有如下代码 @RequestMapping(value ...