Link:

BZOJ 1901 传送门

Solution:

带修改主席树的模板题

对于静态区间第$k$大直接上主席树就行了

但加上修改后会发现修改时复杂度不满足要求了:

去掉/增加第$i$位上的值时要更新$i...n$间所有的主席树,使得单次修改的复杂度达到$n*log(n)$

可以将原来的主席树看成前缀数组

求某一段时尚可直接差分,但涉及到修改时就要改动$O(n)$级别的节点了

这时想到优化前缀和问题的树状数组

如果将原来的每一棵主席树看作树状数组上的点并利用$lowbit()$修改/求值

这样就能每次改动$log(n)$棵主席树,从而将复杂度降到$log(n)^2$

实现中先离散化,对于每一次修改先去掉删除原值,再添加新值就好啦

注意修改时要先记录所有需要的节点并一起移动,对于$k$大问题无法单独计算

Tip:

1、此时每棵线段树已经不再具有主席树的性质了:每次修改在前者基础上增加一条链

其实现在每棵线段树就是在自己原基础上修改,准确地说就是树状数组套动态开点权值线段树

2、好像此类动态开点线段树的空间复杂度我不太会算……

此题好像$O(n*log(n))$就够用了……

Code:

#include <bits/stdc++.h>

using namespace std;
const int MAXN=;
char s[];
struct Query{int i,j,k;}q[MAXN];
//内存开大,好像这题n*log(n)就够了
struct PrTree{int ls,rs,cnt;}seg[];
int n,m,dat[MAXN],rt[MAXN],L[],R[],dsp[MAXN<<],tot,totl,totr,cnt;
inline int lowbit(int x){return x&(-x);}
//PrTree
void Update(int &cur,int pos,int val,int l,int r)
{
if(!cur) cur=++cnt;
seg[cur].cnt+=val;
if(l==r) return;int mid=(l+r)>>;
if(pos<=mid) Update(seg[cur].ls,pos,val,l,mid);
else Update(seg[cur].rs,pos,val,mid+,r);
} int Query(int k,int l,int r)
{
if(l==r) return l;
int sum=,mid=(l+r)>>;
for(int i=;i<=totl;i++) sum-=seg[seg[L[i]].ls].cnt;
for(int i=;i<=totr;i++) sum+=seg[seg[R[i]].ls].cnt;
if(sum>=k)
{
for(int i=;i<=totl;i++) L[i]=seg[L[i]].ls;
for(int i=;i<=totr;i++) R[i]=seg[R[i]].ls;
return Query(k,l,mid);
}
else
{
for(int i=;i<=totl;i++) L[i]=seg[L[i]].rs;
for(int i=;i<=totr;i++) R[i]=seg[R[i]].rs;
return Query(k-sum,mid+,r);
}
}
//BIT
void upd(int x,int val)
{
int pos=lower_bound(dsp+,dsp+tot+,dat[x])-dsp;
for(int i=x;i<=n;i+=lowbit(i))
Update(rt[i],pos,val,,tot);
} int qry(int l,int r,int k)
{
totl=totr=;
for(int i=l-;i;i-=lowbit(i)) L[++totl]=rt[i];
for(int i=r;i;i-=lowbit(i)) R[++totr]=rt[i];
return dsp[Query(k,,tot)];
} int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%d",&dat[i]),dsp[++tot]=dat[i];
for(int i=;i<=m;i++)
{
scanf("%s%d%d",s,&q[i].i,&q[i].j);
if(s[]=='Q') scanf("%d",&q[i].k);
else dsp[++tot]=q[i].j;
}
sort(dsp+,dsp+tot+);
tot=unique(dsp+,dsp+tot+)-dsp-; for(int i=;i<=n;i++) upd(i,);
for(int i=;i<=m;i++)
{
if(q[i].k) printf("%d\n",qry(q[i].i,q[i].j,q[i].k));
else upd(q[i].i,-),dat[q[i].i]=q[i].j,upd(q[i].i,);
}
return ;
}

[BZOJ 1901] Dynamic Rankings的更多相关文章

  1. bzoj 1901 Dynamic Rankings (树状数组套线段树)

    1901: Zju2112 Dynamic Rankings Time Limit: 10 Sec  Memory Limit: 128 MB Description 给定一个含有n个数的序列a[1] ...

  2. [BZOJ 1901] Dynamic Rankings 【树状数组套线段树 || 线段树套线段树】

    题目链接:BZOJ - 1901 题目分析 树状数组套线段树或线段树套线段树都可以解决这道题. 第一层是区间,第二层是权值. 空间复杂度和时间复杂度均为 O(n log^2 n). 线段树比树状数组麻 ...

  3. BZOJ.1901.Dynamic Rankings(线段树套平衡树 Splay)

    题目链接or Here 题意:n个数,有两个操作:1.修改某个数为v:2.询问一段区间第k小的数 如果没有修改,则可以用线段树,每个节点P[a,b]存储大小为b-a+1的数组,代表其中的数 同时,这个 ...

  4. BZOJ.1901.Dynamic Rankings(树状数组套主席树(动态主席树))

    题目链接 BZOJ 洛谷 区间第k小,我们可以想到主席树.然而这是静态的,怎么支持修改? 静态的主席树是利用前缀和+差分来求解的,那么对于每个位置上的每棵树看做一个点,拿树状数组更新. 还是树状数组的 ...

  5. BZOJ.1901.Dynamic Rankings(整体二分)

    题目链接 BZOJ 洛谷 (以下是口胡) 对于多组的询问.修改,我们可以发现: 假设有对p1,p2,p3...的询问,在这之前有对p0的修改(比如+1),且p0<=p1,p2,p3...,那么我 ...

  6. BZOJ 1901 Dynamic Rankings 树董事长

    标题效果:间隔可以改变k少 我的两个天树牌主席... 隔断Count On A Tree 之后我一直认为,随着树的主席的变化是分域林木覆盖率可持久段树. .. 事实上,我是误导... 尼可持久化线段树 ...

  7. BZOJ 1901 Dynamic Rankings (整体二分+树状数组)

    题目大意:略 洛谷传送门 这道题在洛谷上数据比较强 貌似这个题比较常见的写法是树状数组套主席树,动态修改 我写的是整体二分 一开始的序列全都视为插入 对于修改操作,把它拆分成插入和删除两个操作 像$C ...

  8. bzoj 1901: Zju2112 Dynamic Rankings(树套树)

    1901: Zju2112 Dynamic Rankings 经典的带改动求区间第k小值问题 树套树模板,我是用的线段树套splay实现的,并且用的数组模拟的,所以可能空间略大,bzoj过了,zoj过 ...

  9. BZOJ 1901 Zju2112 Dynamic Rankings

    树阵主席设置树.维护间隔动态K大. .. ZOJ到空间太小,太大,仅仅能到BZOJ上交 1901: Zju2112 Dynamic Rankings Time Limit: 10 Sec  Memor ...

随机推荐

  1. 深入理解 Java 多线程核心知识:跳槽面试必备

    多线程相对于其他 Java 知识点来讲,有一定的学习门槛,并且了解起来比较费劲.在平时工作中如若使用不当会出现数据错乱.执行效率低(还不如单线程去运行)或者死锁程序挂掉等等问题,所以掌握了解多线程至关 ...

  2. java springmvc4 图片或文件上传

    1.文件配置 配置文件解析 上传文件处理的核心方法 // uploadOneFile.jsp, uploadMultiFile.jsp submit to. @RequestMapping(value ...

  3. MSSQL 视图/事务(TRAN[SACTION])/存储过程(PROC[EDURE])/触发器(TRIGGER )

    --视图 视图是一张虚拟表,它表示一张表的部分数据或多张表的综合数据,其结构和数据是建立在对表的查询基础上 视图在操作上和数据表没有什么区别,但两者的差异是其本质是不同: 数据表是实际存储记录的地方, ...

  4. javascript 事件绑定

    一.最简单和向后兼容性最好的事件绑定方法是把事件绑定到元素标识的属性.事件属性名称由事件类型外加一个“on”前缀构成.这些属性也被称为事件处理器 <INPUT TYPE="text&q ...

  5. hdu 1016 Prime Ring Problem (素数环)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1016 题目大意:输入一个n,环从一开始到n,相邻两个数相加为素数. #include <iost ...

  6. 生成应用的快捷方式action,权限

    action:"com.android.launcher.action.INSTALL_SHORTCUT" 权限:com.android.launcher.permission.I ...

  7. perl6文件操作

    use v6; #perl6中读取文件方法 #:r 只读, :w 只写, :rw 读写, :a 追加 my $fp = open 'filename.txt', :rw; for $fp.^metho ...

  8. LCD 每隔10分钟 自动熄灭 --打开Framebuffer console的时候【转】

    转自:http://blog.csdn.net/liujia2100/article/details/9009063 版权声明:本文为博主原创文章,未经博主允许不得转载. 之前移植LCD的时候,一切正 ...

  9. C语言restrict限定符

    restrict是c99标准引入的,它只可以用于限定和约束指针,并表明指针是访问一个数据对象的唯一且初始的方式.即它告诉编译器,所有修改该指针所指向内存中内容的操作都必须通过该指针来修改,而不能通过其 ...

  10. 2017中国大学生程序设计竞赛 - 网络选拔赛 HDU 6154 CaoHaha's staff 思维

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6154 题意:在笛卡尔坐标系下,画一个面积至少为  n 的简单多边形,每次只能画一条边或者一个格子的对角 ...