POJ1236:Network of Schools (思维+Tarjan缩点)
Network of Schools
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 24880 | Accepted: 9900 |
题目链接:http://poj.org/problem?id=1236
Description:
A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receiving schools”). Note that if B is in the distribution list of school A, then A does not necessarily appear in the list of school B
You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school.
Input:
The first line contains an integer N: the number of schools in the network (2 <= N <= 100). The schools are identified by the first N positive integers. Each of the next N lines describes a list of receivers. The line i+1 contains the identifiers of the receivers of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.
Output:
Your program should write two lines to the standard output. The first line should contain one positive integer: the solution of subtask A. The second line should contain the solution of subtask B.
Sample Input:
5
2 4 3 0
4 5 0
0
0
1 0
Sample Output:
1
2
题意:
给出一个有向图,然后要你输出两个任务的答案:
1.至少需要从多少个点出发,能够到达所有的点;2.最少需要连多少条边,能够使得从任意点出发都能够到达其它所有点。
题解:
这个题我一开始想的就是直接暴力,但很明显第二个问题行不通,所以就要考虑一些性质,或者用一些数学思想。
第一个问题还是比较好想,入度为0的点的个数即位答案,如果不存在入度为0的点,答案就是1。简略证明如下(题目保证图是连通的):
假设入度为0的点为n,那么至少需要n个点才能遍及所有点,然后对于其余入度非0的点来说,必然是由其他点到达的,如果这个点不在环上,那么就必定是从一个入度为0的点来的;如果这个点在环上,这个环中的所有点也会由其余入度为0的点到达;假设这是个单独的环,那么答案为1。
第二个问题要求所有点都互相可以到达。那么我们可以知道的是,图中必然不会存在入度为0以及出度为0的点,假设这两者的个数分别为n,m。
那么最优的连边方法就是入度为0的点与出度为0的点匹配,最后剩下的乱连就行了,所以最后答案就是max(n,m)。证明的话yy一下吧。
因为我们刚才是基于有向无环图来思考的,环的存在应该把它当作一个点,所以考虑Tarjan缩波点就行了。
代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
#include <stack>
using namespace std;
typedef long long ll;
const int N = ;
int n,tot;
int head[N],in[N],out[N],low[N],dfn[N],vis[N],scc[N];
struct Edge{
int u,v,next;
}e[N*N<<],edge[N*N<<];
void adde(int u,int v){
e[tot].u=u;e[tot].v=v;e[tot].next=head[u];head[u]=tot++;
}
stack <int> s;
int T,num;
void Tarjan(int u){
dfn[u]=low[u]=++T;vis[u]=;
s.push(u);
for(int i=head[u];i!=-;i=e[i].next){
int v=e[i].v;
if(!vis[v]){
Tarjan(v);
low[u]=min(low[u],low[v]);
}else if(!scc[v]){
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u]){
num++;int now;
do{
now = s.top();s.pop();
scc[now]=num;
}while(!s.empty() && now!=u);
}
}
int main(){
scanf("%d",&n);
int m=;
memset(head,-,sizeof(head));
for(int i=;i<=n;i++){
int v;
while(scanf("%d",&v)!=EOF){
if(v==) break ;
edge[++m].u=i;edge[m].v=v;
adde(i,v);
}
}
//cout<<m<<endl;
for(int i=;i<=n;i++){
if(!vis[i]) Tarjan(i);
}
for(int i=;i<=m;i++){
int u=edge[i].u,v=edge[i].v;
if(scc[u]!=scc[v]){
in[scc[v]]++;out[scc[u]]++;
}
}
int cnt1=,cnt2=;
for(int i=;i<=num;i++){
if(!in[i]) cnt1++;
if(!out[i]) cnt2++;
}
//cout<<num<<endl;
if(num==) cout<<<<endl<<;
else cout<<cnt1<<endl<<max(cnt2,cnt1);
return ;
}
POJ1236:Network of Schools (思维+Tarjan缩点)的更多相关文章
- POJ1236:Network of Schools(tarjan+缩点)?
题目: http://poj.org/problem?id=1236 [题意] N(2<N<100)各学校之间有单向的网络,每个学校得到一套软件后,可以通过单向网络向周边的学校传输,问题1 ...
- POJ 1236 Network of Schools(Tarjan缩点)
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16806 Accepted: 66 ...
- poj 1236 Network of Schools(tarjan+缩点)
Network of Schools Description A number of schools are connected to a computer network. Agreements h ...
- POJ1236 Network of Schools —— 强连通分量 + 缩点 + 入出度
题目链接:http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS Memory Limit: 10000K Tot ...
- P2746 [USACO5.3]校园网Network of Schools// POJ1236: Network of Schools
P2746 [USACO5.3]校园网Network of Schools// POJ1236: Network of Schools 题目描述 一些学校连入一个电脑网络.那些学校已订立了协议:每个学 ...
- poj1236 Network of Schools【强连通分量(tarjan)缩点】
转载请注明出处,谢谢:http://www.cnblogs.com/KirisameMarisa/p/4316263.html ---by 墨染之樱花 [题目链接]http://poj.org/pr ...
- POJ1236 - Network of Schools tarjan
Network of Schools Time Limit: 1000MS Memory Limi ...
- POJ1236 Network of Schools (强连通)(缩点)
Network of Schools Time Limit: 1000MS ...
- POJ-1236 Network of Schools,人生第一道Tarjan....
Network of Schools 题意:若干个学校组成一个计算机网络系统,一个学校作为出发端连接着若干个学校,信息可以传送到这些学校.被链接的学校不需要再次与出发端相连,现在问你:A:最少选几个学 ...
随机推荐
- JVM--内存模型与线程
一.硬件与效率的一致性 计算机的存储设备与处理器的运算速度存在几个数量级的差距,现在计算机系统不得不在内存和处理器之间增加一层高速缓存(cache)来作为缓冲.将运算需要的数据复制到缓存中,让运算能够 ...
- github项目切换远程https到ssh通道
github 切换远程https到ssh通道 github 每个仓库有两类地址:https和ssh通道. https通道获取代码方便,提交过程中每次都需要输入用户名和密码. ssh通道需要提前配置号s ...
- Dask教程
Dask 介绍 Dask是一款用于分析计算的灵活并行计算库. Dask由两部分组成: 针对计算优化的动态任务调度.这与Airflow,Luigi,Celery或Make类似,但针对交互式计算工作负载进 ...
- 一键部署 Docker Datacenter ---简化docker数据中心安装步骤
DDC 简介 2016年2月下旬,Docker发布了企业级容器管理和服务部署的整体解决方案平台-Docker Datacenter,简称DDC.DDC 有三个组件构成:1. Docker Univer ...
- BZOJ 4557 JLOI2016 侦查守卫 树形dp
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4557 题意概述: 给出一棵树,每个点付出代价w[i]可以控制距离和它不超过d的点,现在给 ...
- POJ 2540 Hotter Colder(半平面交)
Description The children's game Hotter Colder is played as follows. Player A leaves the room while p ...
- PHP 将一个字符串部分字符用$re替代隐藏
<?php/** * 将一个字符串部分字符用$re替代隐藏 * @param string $string 待处理的字符串 * @param int $start 规定在字符串的何处开始, * ...
- 总结python 元组和列表的区别
python的基本类型中有元组和列表这么俩个,但是这哥俩却比较难于区分,今天就来用简单的实例说明两者的不同. 列表:1.使用中括号([ ])包裹,元素值和个数可变 实例: aaa = ['sitena ...
- #Leetcode# 700. Search in a Binary Search Tree
https://leetcode.com/problems/search-in-a-binary-search-tree/ Given the root node of a binary search ...
- 统计VS2013中有效行数
将鼠标放在解决方案处,按下ctrl+shift+F b*[^:b#/]+.*$(带前面的using)^b*[^:b#/]+.*$