Pandas日期功能
日期功能扩展了时间序列,在财务数据分析中起主要作用。在处理日期数据的同时,我们经常会遇到以下情况 -
- 生成日期序列
- 将日期序列转换为不同的频率
创建一个日期范围
通过指定周期和频率,使用date.range()函数就可以创建日期序列。 默认情况下,范围的频率是天。参考以下示例代码 -
import pandas as pd
datelist = pd.date_range('2020/11/21', periods=5)
print(datelist)
执行上面示例代码,得到以下结果 -
DatetimeIndex(['2020-11-21', '2020-11-22', '2020-11-23', '2020-11-24',
'2020-11-25'],
dtype='datetime64[ns]', freq='D')
更改日期频率
import pandas as pd
datelist = pd.date_range('2020/11/21', periods=5,freq='M')
print(datelist)
执行上面示例代码,得到以下结果 -
DatetimeIndex(['2020-11-30', '2020-12-31', '2021-01-31', '2021-02-28',
'2021-03-31'],
dtype='datetime64[ns]', freq='M')
bdate_range()函数
bdate_range()用来表示商业日期范围,不同于date_range(),它不包括星期六和星期天。
import pandas as pd
datelist = pd.date_range('2011/11/03', periods=5)
print(datelist)
执行上面示例代码,得到以下结果 -
DatetimeIndex(['2017-11-03', '2017-11-06', '2017-11-07', '2017-11-08',
'2017-11-09'],
dtype='datetime64[ns]', freq='B')
观察到11月3日以后,日期跳至11月6日,不包括4日和5日(因为它们是周六和周日)。
像date_range和bdate_range这样的便利函数利用了各种频率别名。date_range的默认频率是日历中的自然日,而bdate_range的默认频率是工作日。参考以下示例代码 -
import pandas as pd
start = pd.datetime(2017, 11, 1)
end = pd.datetime(2017, 11, 5)
dates = pd.date_range(start, end)
print(dates)
执行上面示例代码,得到以下结果 -
DatetimeIndex(['2017-11-01', '2017-11-02', '2017-11-03', '2017-11-04',
'2017-11-05'],
dtype='datetime64[ns]', freq='D')
偏移别名
大量的字符串别名被赋予常用的时间序列频率。我们把这些别名称为偏移别名。
| 别名 | 描述说明 |
|---|---|
B |
工作日频率 |
BQS |
商务季度开始频率 |
D |
日历/自然日频率 |
A |
年度(年)结束频率 |
W |
每周频率 |
BA |
商务年底结束 |
M |
月结束频率 |
BAS |
商务年度开始频率 |
SM |
半月结束频率 |
BH |
商务时间频率 |
SM |
半月结束频率 |
BH |
商务时间频率 |
BM |
商务月结束频率 |
H |
小时频率 |
MS |
月起始频率 |
T, min |
分钟的频率 |
SMS |
SMS半开始频率 |
S |
秒频率 |
BMS |
商务月开始频率 |
L, ms |
毫秒 |
Q |
季度结束频率 |
U, us |
微秒 |
BQ |
商务季度结束频率 |
N |
纳秒 |
BQ |
商务季度结束频率 |
QS |
季度开始频率 |
Pandas日期功能的更多相关文章
- Pandas | 21 日期功能
日期功能扩展了时间序列,在财务数据分析中起主要作用.在处理日期数据的同时,我们经常会遇到以下情况 - 生成日期序列 将日期序列转换为不同的频率 创建一个日期范围 通过指定周期和频率,使用date.ra ...
- pandas小记:pandas高级功能
http://blog.csdn.net/pipisorry/article/details/53486777 pandas高级功能:面板数据.字符串方法.分类.可视化. 面板数据 {pandas数据 ...
- Pandas基本功能详解
Pandas基本功能详解 Pandas Pandas基本功能详解 |轻松玩转Pandas(2) 参考:Pandas基本功能详解 |轻松玩转Pandas(2)
- Pandas日期数据处理:如何按日期筛选、显示及统计数据
前言 pandas有着强大的日期数据处理功能,本期我们来了解下pandas处理日期数据的一些基本功能,主要包括以下三个方面: 按日期筛选数据 按日期显示数据 按日期统计数据 运行环境为 windows ...
- Pandas基本功能之reindex重新索引
重新索引 reindex重置索引,如果索引值不存在,就引入缺失值 参数介绍 参数 说明 index 用作索引的新序列 method 插值 fill_vlaue 引入缺失值时的替代NaN limit 最 ...
- python使用easyinstall安装xlrd、xlwt、pandas等功能模块的方法
在日常工作中,使用Python时经常要引入一些集成好的第三方功能模块,如读写excel的xlrd和xlwt模块,以及数据分析常用的pandas模块等. 原生的python并不含这些模块,在使用这些功能 ...
- Pandas基本功能
到目前为止,我们了解了三种Pandas数据结构以及如何创建它们.接下来将主要关注数据帧(DataFrame)对象,因为它在实时数据处理中非常重要,并且还讨论其他数据结构. 系列基本功能 编号 属性或方 ...
- Pandas常用功能
在使用Pandas之前,需要导入pandas库 import pandas as pd #pd作为pandas的别名 常用功能如下: 代码 功能1 .DataFrame() 创建一个DataFr ...
- Pandas常用功能总结
1.读取.csv文件 df2 = pd.read_csv('beijingsale.csv', encoding='gb2312',index_col='id',sep='\t',header=Non ...
随机推荐
- 讨论cocos2d-x字体绘制原理和应用方案
转自:http://blog.csdn.net/langresser_king/article/details/9012789 个人一直认为,文字绘制是cocos2d-x最薄弱的环节.对于愤怒的小鸟之 ...
- 求其中同一个主叫号码的两次通话之间间隔大于10秒的通话记录ID
求其中同一个主叫号码的两次通话之间间隔大于10秒的通话记录ID 例如:6,7,8,9,10条记录均符合 ID 主叫号码 被叫号码 通话起始时间 通话结束时间 ...
- 初识Flutter
什么是Flutter 官网的定义如下: Flutter is a new project to help developers build high-performance, high-fidelit ...
- SQL-修改: 将日期修改为空NULL、修改为空的记录
1.将日期修改为空NULL update 表 set 字段=null where 字段='' 如果设置为‘’,会默认1900-01-01 2.修改为空的记录 update [dbo].[pub_ite ...
- 第三课作业——set类型、sorted set类型的增删改查,redis的事务
第三课时作业 静哥 by 2016.2.23~2016.3.6 [作业描述] 1.总结什么是set以及什么是sorted set,并完成对set以及sorted set的增删改查(查需要至少4种方 ...
- Powershell About File System
File System Rights Get-Acl $sharepath | select -expand access | where { !$_.IsInherited -AND $_.file ...
- Powershell About Active Directory Group Membership of a domain user
使用Get-User命令去寻找group membership of a domain user $((Get-ADUser Wendy -Properties *).MemberOf -split ...
- plotly绘制直方图示例
计算数值出现的次数“ import cufflinks as cf cf.go_offline() import numpy as np import pandas as pd set_slippag ...
- javascript教程2:---DOM操作
1.DOM 简介 当页面加载时,浏览器会创建页面的文档对象模型(Document Object Model).文档对象模型定义访问和处理 HTML 文档的标准方法.DOM 将 HTML 文档呈现为带有 ...
- PyQuery的基本使用详解
0.安装:pip3 install pyquery 1.初始化 1.字符串初始化 # 字符串初始化 html = """ <div> <ul> & ...