Description

K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则. 他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的.为了巩固三角关系,K国禁止四边关系,五边关系等等的存在.所谓N边关 系,是指N个人 A1A2...An之间仅存在N对认识关系:(A1A2)(A2A3)...(AnA1),而没有其它认识关系.比如四边关系指ABCD四个人 AB,BC,CD,DA相互认识,而AC,BD不认识.全民比赛时,为了防止做弊,规定任意一对相互认识的人不得在一队,国王相知道,最少可以分多少支 队。

Input

第一行两个整数N,M。1<=N<=10000,1<=M<=1000000.表示有N个人,M对认识关系. 接下来M行每行输入一对朋友

Output

输出一个整数,最少可以分多少队

Sample Input

4 5
1 2
1 4
2 4
2 3
3 4

Sample Output

3

HINT

一种方案(1,3)(2)(4)

分析

我的能力也仅限于把问题转化为最小染色数= =然后我就不会做啦╮(╯▽╰)╭

其实这是个神奇的论文题……要用到弦图的单纯点和“完美消除序列”的概念,课件详见陈丹琦的冬令营2009讲稿《弦图与区间图》……

呃……我实在太弱,看了课件也是不知所云= =先留成坑吧……

  #include <iostream>
 #include <cctype>
 #include <cstdio>
 #include <vector>
  inline           ;
          , c = getchar();
     x = c -       + c -       }
  ;
 vector< }, ans = , adjcnt[maxn] = {};
 inline           getd(N), getd(M);
              getd(a), getd(b);
         adj[a].push_back(b);
         adj[b].push_back(a);
     }
 }
 inline      , Max = ;
          lim = (].size();
     color[] = ;
     ;i < lim;++i)
         ][i]]) ++adjcnt[adj[][i]];
     ;i < N;++i){
         Max = ;
         ;j <= N;++j){
             ok_col[j] = ;
                      }
         lim = (         ;j < lim;++j)
             ok_col[color[adj[tmp][j]]] = ;
         ;j <= N;++j)          color[tmp] = j;
                  lim = (         ;j < lim;++j)
                  }
     printf( }
      init();
     work();
     ;
 }

MCS算法

[bzoj1006](HNOI2008)神奇的国度(弦图最小染色)【太难不会】的更多相关文章

  1. ●BZOJ 1006 [HNOI2008]神奇的国度(弦图最小染色数)○ZOJ 1015 Fishing Net

    ●赘述题目 给出一张弦图,求其最小染色数. ●题解 网上的唯一“文献”:<弦图与区间图>(cdq),可以学习学习.(有的看不懂) 摘录几个解决改题所需的知识点: ●子图和诱导子图(一定要弄 ...

  2. bzoj 1006: [HNOI2008]神奇的国度 弦图的染色问题&&弦图的完美消除序列

    1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1788  Solved: 775[Submit][Stat ...

  3. [BZOJ1006] [HNOI2008] 神奇的国度 (弦图)

    Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则.他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的.为了巩固三角关系,K国禁止四边关系,五边关系 ...

  4. BZOJ1006:[HNOI2008]神奇的国度(弦图染色)

    Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则.他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的. 为了巩固三角关系,K国禁止四边关系,五边关 ...

  5. bzoj 1006 [HNOI2008]神奇的国度 弦图+完美消除序列+最大势算法

    [HNOI2008]神奇的国度 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 4370  Solved: 2041[Submit][Status][D ...

  6. 【BZOJ】1006: [HNOI2008]神奇的国度 弦图消除完美序列问题

    1006: [HNOI2008]神奇的国度 Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则. 他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的 ...

  7. bzoj 1006: [HNOI2008]神奇的国度 -- 弦图(最大势算法)

    1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec  Memory Limit: 162 MB Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角 ...

  8. BZOJ 1006: [HNOI2008]神奇的国度(弦图)

    传送门 解题思路 弦图就是图中任意一个大小\(>=4\)的环至少存在一条两个节点不相邻的边,这样的图称为弦图,弦图有许多优美的性质.一个无向图是弦图当且仅当它有一个完美消除序列,完美消除序列就是 ...

  9. [BZOJ 1006] [HNOI2008] 神奇的国度 【弦图最小染色】

    题目链接: BZOJ - 1006 题目分析 这道题是一个弦图最小染色数的裸的模型. 弦图的最小染色求法,先求出弦图的完美消除序列(MCS算法),再按照完美消除序列,从后向前倒着,给每个点染能染的最小 ...

随机推荐

  1. Linux C中内联汇编的语法格式及使用方法(Inline Assembly in Linux C)【转】

    转自:http://www.linuxidc.com/Linux/2013-06/85221p3.htm 阅读Linux内核源码或对代码做性能优化时,经常会有在C语言中嵌入一段汇编代码的需求,这种嵌入 ...

  2. telnet如何保存输出内容到本地

    telnet如何保存输出内容到本地 http://bbs.csdn.net/topics/391023327 一种将程序的标准输出重定向到telnet终端的方法 http://blog.chinaun ...

  3. android 与JS之间的交互

    在页面布局很复杂并且是动态的时候,android本身的控件就变得不是那么地灵活了,只有借助于网页的强大布局能力才能实现,但是在操作html页面的同时也需要与android其它的组件存在交互,比如说 在 ...

  4. 改变ASPxpivotgridview弹出的prefilter的标题

    说是要给变标题,再网上找了很久的资料,基本上属于一无所获,后来在官网上看到一个技术支持用vb写的,说是要本地化什么的,个人技术有限不是太懂 后来干脆就直接注册个账号,发问了,好歹等到了晚上十点左右,有 ...

  5. ffmpeg安装与配置

    wget http://www.ffmpeg.org/releases/ffmpeg-3.1.tar.gz tar -zxvf ffmpeg-3.1.tar.gz cd ffmpeg-3.1 ./co ...

  6. 15:django 缓存架构

    动态网站的一个基本权衡就是他们是动态的,每次一个用户请求一个页面,web服务器进行各种各样的计算-从数据库查询到模板渲染到业务逻辑-从而生成站点访问者看到的页面.从处理开销的角度来看,相比标准的从文件 ...

  7. 【DUBBO】dubbo的Router接口

    Router服务路由, 根据路由规则从多个Invoker中选出一个子集AbstractDirectory是所有目录服务实现的上层抽象, 它在list列举出所有invokers后,会在通过Router服 ...

  8. JAVA二叉树的创建以及各种功能的实现

    直接上代码了,代码说得很清楚了 package BTree; public class BTree { private Node root; private class Node { private ...

  9. 【转载】python 特殊函数 dunder function

    python的特殊方法:另外一种称谓是 dunder function, 就是 under-under function的简写,就是指那些前后都带双下划线的函数. 转自这里: https://blog ...

  10. golang实现mysql数据库备份

    背景 navicat是mysql可视化工具中最棒的,但是,在处理视图的导入导出方面,它是按照视图名称的字母顺序来处理的,若视图存在依赖,在导入过程中就会报错.前面已经用python写了一个,但在使用过 ...