An Attempt to Understand Boosting Algorithm(s)

WELCOME!

Here you will find daily news and tutorials about R, contributed by over 573 bloggers. 
There are many ways tofollow us - 
By e-mail:  On Facebook: 
If you are an R blogger yourself you are invited to add your own R content feed to this site(Non-English R bloggers should add themselves- here)

RECENT POSTS

An Attempt to Understand Boosting Algorithm(s)

June 26, 2015

By arthur charpentier

 
(This article was first published on Freakonometrics » R-english, and kindly contributed to R-bloggers)

Tuesday, at the annual meeting of the French Economic Association, I was having lunch Alfred, and while we were chatting about modeling issues (econometric models against machine learning prediction), he asked me what boosting was. Since I could not be very specific, we’ve been looking atwikipedia page.

Boosting is a machine learning ensemble meta-algorithm for reducing bias primarily and also variance in supervised learning, and a family of machine learning algorithms which convert weak learners to strong ones

One should admit that it is not very informative. At least, there is the idea that ‘weak learners’ can be used to get a good predictor. Now, to be honest, I guess I understand the concept. But I still can’t reproduce what I got with standard ‘boosting’ packages.

There are a lot of publications about the concept of ‘boosting’. In 1988, Michael Kearns published Thoughts on Hypothesis Boosting, which is probably the oldest one. About the algorithms, it is possible to find some references. Consider for instance Improving Regressors using Boosting Techniques, by Harris Drucker. Or The Boosting Approach to Machine Learning An Overview by Robert Schapire, among many others. In order to illustrate the use of boosting in the context of regression (and not classification, since I believe it provides a better visualisation) consider the section in Dong-Sheng Cao’s In The boosting: A new idea of building models.

In a very general context, consider a model like

The idea is to write it as

or, as we will seen soon,

(where ‘s will be some shrinkage parameters). To get all the components of that sum, we will use an iterative procedure. Define the partial sum (that will be our prediction at step )

Since we consider some regression function here, use the  loss function, to get the  function, we solve

(we can imagine that the loss function can be changed, for instance in the context of classification).

The concept is simple, but from a practical perspective, it is actually a difficult problem since optimization is performed here in a very large set (a functional space actually). One of the trick will be to use a base of learners. Weak learners. And to make sure that we don’t use too strong learners, consider also some shrinkage parameters, as discussed previously. The iterative algorithm is

  • start with some regression model 
  • compute the residuals, including some shrinkage parameter,

then the strategy is to model those residuals

  • at step , consider regression 
  • update the residuals 

and to loop. Then set

So far, I guess I understand the concept. The next step is then to write the code to see how it works, for real. One can easily get the intuition that, indeed, it should work, and we should end up with a decent model. But we have to try it, and play with it to check that it performs better than any other algorithms.

Consider the following dataset,

n=300
set.seed(1)
u=sort(runif(n)*2*pi)
y=sin(u)+rnorm(n)/4
df=data.frame(x=u,y=y)

If we visualize it, we get

plot(df)

Consider some linear-by-part regression models. It could make sense here. At each iterations, there are 7 parameters to ‘estimate’, the slopes and the nodes. Here, consider some constant shrinkage parameter (there is no need to start with something to complicated, I guess).

v=.05
library(splines)
fit=lm(y~bs(x,degree=1,df=3),data=df)
yp=predict(fit,newdata=df)
df$yr=df$y - v*yp
YP=v*yp

I store in the original dataset the residuals (that will be updated), and I keep tracks of all the predictions. Consider now the following loop

for(t in 1:100){
fit=lm(yr~bs(x,degree=1,df=3),data=df)
yp=predict(fit,newdata=df)
df$yr=df$yr - v*yp
YP=cbind(YP,v*yp)
}

This is the implementation of the algorithm described above, right? To visualise it, at some early stage, use

nd=data.frame(x=seq(0,2*pi,by=.01))
viz=function(M){
if(M==1) y=YP[,1]
if(M>1) y=apply(YP[,1:M],1,sum)
plot(df$x,df$y,ylab="",xlab="")
lines(df$x,y,type="l",col="red",lwd=3)
fit=lm(y~bs(x,degree=1,df=3),data=df)
yp=predict(fit,newdata=nd)
lines(nd$x,yp,type="l",col="blue",lwd=3)
lines(nd$x,sin(nd$x),lty=2)}

The red line is the initial guess we have, without boosting, using a simple call of the regression function. The blue one is the one obtained using boosting. The dotted line is the truemodel.

viz(50)

Somehow, boosting is working. But even the possibility to get different notes at each step, it looks like we don’t use it. And we cannot perform better than a simple regression function.

What if we use quadratic splines instead of linear splines?

v=.05
fit=lm(y~bs(x,degree=2,df=3),data=df)
yp=predict(fit,newdata=df)
df$yr=df$y - v*yp
YP=v*yp
library(splines)
for(t in 1:100){
fit=lm(yr~bs(x,degree=2,df=3),data=df)
yp=predict(fit,newdata=df)
df$yr=df$yr - v*yp
YP=cbind(YP,v*yp)
}

Again, boosting is not improving anything here. We’ll discuss later on the impact of the shrinkage parameter, but here, it won’t change much the output (it might be faster of slower to reach the final prediction, but it will always be the same predictive model).

In order to get something different at each step, it tried to add a boostrap procedure. I don’t know if that’s sill ‘boosting’, but why not try it.

v=.1
idx=sample(1:n,size=n,replace=TRUE)
fit=lm(y~bs(x,degree=1,df=3),data=df[idx,])
yp=predict(fit,newdata=df)
df$yr=df$y - v*yp
YP=v*yp
 
for(t in 1:100){
idx=sample(1:n,size=n,replace=TRUE)
fit=lm(yr~bs(x,degree=1,df=3),data=df[idx,])
yp=predict(fit,newdata=df)
df$yr=df$yr - v*yp
YP=cbind(YP,v*yp)
}

At each step, I sample from my dataset, and get a linear-by-parts regression. And again, I use a shrinkage parameter not to learn too fast.

It is slightly different (if you look very carefully). But actually, an algorithm that will be as costly is a ‘bagging’ one, where we boostrap many samples, get different models, and predictions, and then average all the predictions. The (computational) cost is exactly the same here

YP=NULL
library(splines)
for(t in 1:100){
idx=sample(1:n,size=n,replace=TRUE)
fit=lm(y~bs(x,degree=1,df=3),data=df[idx,])
yp=predict(fit,newdata=nd)
YP=cbind(YP,yp)
}
y=apply(YP[,1:100],1,mean)
plot(df$x,df$y,ylab="",xlab="")
lines(nd$x,y,type="l",col="purple",lwd=3)

It is very close to what we got with the boosting procedure.

Let us try something else. What if we consider at each step a regression tree, instead of a linear-by-parts regression.

library(rpart)
v=.1
fit=rpart(y~x,data=df)
yp=predict(fit)
df$yr=df$y - v*yp
YP=v*yp
for(t in 1:100){
fit=rpart(yr~x,data=df)
yp=predict(fit,newdata=df)
df$yr=df$yr - v*yp
YP=cbind(YP,v*yp)
}

Again, to visualise the learning process, use

viz=function(M){
y=apply(YP[,1:M],1,sum)
plot(df$x,df$y,ylab="",xlab="")
lines(df$x,y,type="s",col="red",lwd=3)
fit=rpart(y~x,data=df)
yp=predict(fit,newdata=nd)
lines(nd$x,yp,type="s",col="blue",lwd=3)
lines(nd$x,sin(nd$x),lty=2)}

This time, with those trees, it looks like not only we have a good model, but also a different model from the one we can get using a single regression tree.

What if we change the shrinkage parameter?

viz=function(v=0.05){
fit=rpart(y~x,data=df)
yp=predict(fit)
df$yr=df$y - v*yp
YP=v*yp
for(t in 1:100){
fit=rpart(yr~x,data=df)
yp=predict(fit,newdata=df)
df$yr=df$yr - v*yp
YP=cbind(YP,v*yp)
}
y=apply(YP,1,sum)
plot(df$x,df$y,xlab="",ylab="")
lines(df$x,y,type="s",col="red",lwd=3)
fit=rpart(y~x,data=df)
yp=predict(fit,newdata=nd)
lines(nd$x,yp,type="s",col="blue",lwd=3)
lines(nd$x,sin(nd$x),lty=2)
}

There is clearly an impact of that parameter. It has to be small to get a good model. This is the idea of using ‘weak learners’ to get a good prediction.

If we add a boostrap sample selection , we get also a good predictive model, here

v=.1
idx=sample(1:n,size=n,replace=TRUE)
fit=rpart(y~x,data=df[idx,])
yp=predict(fit,newdata=df)
df$yr=df$y - v*yp
YP=v*yp
for(t in 1:100){
idx=sample(1:n,size=n,replace=TRUE)
fit=rpart(yr~x,data=df[idx,])
yp=predict(fit,newdata=df)
df$yr=df$yr - v*yp
YP=cbind(YP,v*yp)
}

It looks like using a small shrinkage parameter, and some regression tree at each step, we get some ‘weak learners’. It performs well, but so far, I do not see how it could perform better than standard econometric models. But I am still working on it.

An Attempt to Understand Boosting Algorithm(s)的更多相关文章

  1. A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning

    A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning by Jason Brownlee on S ...

  2. How to Configure the Gradient Boosting Algorithm

    How to Configure the Gradient Boosting Algorithm by Jason Brownlee on September 12, 2016 in XGBoost ...

  3. 转:The Knuth-Morris-Pratt Algorithm in my own words

    The Knuth-Morris-Pratt Algorithm in my own words For the past few days, I’ve been reading various ex ...

  4. 机器学习技法:08 Adaptive Boosting

    Roadmap Motivation of Boosting Diversity by Re-weighting Adaptive Boosting Algorithm Adaptive Boosti ...

  5. Gradient Boosting, Decision Trees and XGBoost with CUDA ——GPU加速5-6倍

    xgboost的可以参考:https://xgboost.readthedocs.io/en/latest/gpu/index.html 整体看加速5-6倍的样子. Gradient Boosting ...

  6. 机器学习技法笔记:08 Adaptive Boosting

    Roadmap Motivation of Boosting Diversity by Re-weighting Adaptive Boosting Algorithm Adaptive Boosti ...

  7. Python中Gradient Boosting Machine(GBM)调参方法详解

    原文地址:Complete Guide to Parameter Tuning in Gradient Boosting (GBM) in Python by Aarshay Jain 原文翻译与校对 ...

  8. Tree - Gradient Boosting Machine with sklearn source code

    This is the second post in Boosting algorithm. In the previous post, we go through the earliest Boos ...

  9. The Knuth-Morris-Pratt Algorithm in my own words(转)

    origianl For the past few days, I’ve been reading various explanations of the Knuth-Morris-Pratt str ...

随机推荐

  1. jquery做个日期选择适用于手机端

    第一步:做个 文本框用于显示年月日的 第二步:点击文本框触发bootstrap模态框并显示 第三步:我是建一个外部js页面写的 js中获得当前时间是年份和月份,形如:201208       //获取 ...

  2. 数学之路-python计算实战(20)-机器视觉-拉普拉斯算子卷积滤波

    拉普拉斯算子进行二维卷积计算,线性锐化滤波 # -*- coding: utf-8 -*- #线性锐化滤波-拉普拉斯算子进行二维卷积计算 #code:myhaspl@myhaspl.com impor ...

  3. 字符串 赋值 以及gets

    我们知道字符串用字符数组或用指针实现,但是在赋值的时候产生了不少疑惑 使用方法一: char a[ ]={"I LOVE YOU!"}; 但是以下这样就是错的: char a[20 ...

  4. SSD -----TLC MLC SLC

    SLC缓存什么鬼?TLC评测造假要持续多久 2016.5.5来源:中关村在线 TLC的廉价真的将SSD引入了全面普及的高速公路上,谈到TLC我们更多的理解是TLC的P/E(Program/Erase ...

  5. IOS-NSDateFormatter使用介绍

    IOS-NSDateFormatter使用介绍 NSDateFormatter的使用: NSDate *nowDate = [[NSDate alloc] init]; NSDateFormatter ...

  6. ARC和非ARC文件混编

    在编程过程中,我们会用到很多各种各样的他人封装的第三方代码,但是有很多第三方都是在非ARC情况下运行的,当你使用第三方编译时出现和下图类似的错误,就说明该第三方是非ARC的,需要进行一些配置. 解决方 ...

  7. Java——(八)Map之LinkedHashMap、TreeMap、EnumMap实现类

    ------Java培训.Android培训.iOS培训..Net培训.期待与您交流! ------- 1.LinkedHashMap实现类 LinkedHashMap需要维护意识的插入顺序,因此性能 ...

  8. 在Linux下用netstat查看网络状态、端口状态

    在Linux下用netstat查看网络状态.端口状态 在linux一般使用netstat 来查看系统端口使用情况步. netstat命令是一个监控TCP/IP网络的非常有用的工具,它可以显示路由表.实 ...

  9. android 如何解决模块之间的通讯的耦合问题

    使用EventBus http://wuyexiong.github.io/blog/2013/04/30/android-fragment/ http://yunfeng.sinaapp.com/? ...

  10. Android中全局搜索(QuickSearchBox)详解

    http://blog.csdn.net/mayingcai1987/article/details/6268732 1. 标题: 应用程序如何全面支持搜索 2. 引言: 如果想让某个应用程序支持全局 ...