An Attempt to Understand Boosting Algorithm(s)

WELCOME!

Here you will find daily news and tutorials about R, contributed by over 573 bloggers. 
There are many ways tofollow us - 
By e-mail:  On Facebook: 
If you are an R blogger yourself you are invited to add your own R content feed to this site(Non-English R bloggers should add themselves- here)

RECENT POSTS

An Attempt to Understand Boosting Algorithm(s)

June 26, 2015

By arthur charpentier

 
(This article was first published on Freakonometrics » R-english, and kindly contributed to R-bloggers)

Tuesday, at the annual meeting of the French Economic Association, I was having lunch Alfred, and while we were chatting about modeling issues (econometric models against machine learning prediction), he asked me what boosting was. Since I could not be very specific, we’ve been looking atwikipedia page.

Boosting is a machine learning ensemble meta-algorithm for reducing bias primarily and also variance in supervised learning, and a family of machine learning algorithms which convert weak learners to strong ones

One should admit that it is not very informative. At least, there is the idea that ‘weak learners’ can be used to get a good predictor. Now, to be honest, I guess I understand the concept. But I still can’t reproduce what I got with standard ‘boosting’ packages.

There are a lot of publications about the concept of ‘boosting’. In 1988, Michael Kearns published Thoughts on Hypothesis Boosting, which is probably the oldest one. About the algorithms, it is possible to find some references. Consider for instance Improving Regressors using Boosting Techniques, by Harris Drucker. Or The Boosting Approach to Machine Learning An Overview by Robert Schapire, among many others. In order to illustrate the use of boosting in the context of regression (and not classification, since I believe it provides a better visualisation) consider the section in Dong-Sheng Cao’s In The boosting: A new idea of building models.

In a very general context, consider a model like

The idea is to write it as

or, as we will seen soon,

(where ‘s will be some shrinkage parameters). To get all the components of that sum, we will use an iterative procedure. Define the partial sum (that will be our prediction at step )

Since we consider some regression function here, use the  loss function, to get the  function, we solve

(we can imagine that the loss function can be changed, for instance in the context of classification).

The concept is simple, but from a practical perspective, it is actually a difficult problem since optimization is performed here in a very large set (a functional space actually). One of the trick will be to use a base of learners. Weak learners. And to make sure that we don’t use too strong learners, consider also some shrinkage parameters, as discussed previously. The iterative algorithm is

  • start with some regression model 
  • compute the residuals, including some shrinkage parameter,

then the strategy is to model those residuals

  • at step , consider regression 
  • update the residuals 

and to loop. Then set

So far, I guess I understand the concept. The next step is then to write the code to see how it works, for real. One can easily get the intuition that, indeed, it should work, and we should end up with a decent model. But we have to try it, and play with it to check that it performs better than any other algorithms.

Consider the following dataset,

n=300
set.seed(1)
u=sort(runif(n)*2*pi)
y=sin(u)+rnorm(n)/4
df=data.frame(x=u,y=y)

If we visualize it, we get

plot(df)

Consider some linear-by-part regression models. It could make sense here. At each iterations, there are 7 parameters to ‘estimate’, the slopes and the nodes. Here, consider some constant shrinkage parameter (there is no need to start with something to complicated, I guess).

v=.05
library(splines)
fit=lm(y~bs(x,degree=1,df=3),data=df)
yp=predict(fit,newdata=df)
df$yr=df$y - v*yp
YP=v*yp

I store in the original dataset the residuals (that will be updated), and I keep tracks of all the predictions. Consider now the following loop

for(t in 1:100){
fit=lm(yr~bs(x,degree=1,df=3),data=df)
yp=predict(fit,newdata=df)
df$yr=df$yr - v*yp
YP=cbind(YP,v*yp)
}

This is the implementation of the algorithm described above, right? To visualise it, at some early stage, use

nd=data.frame(x=seq(0,2*pi,by=.01))
viz=function(M){
if(M==1) y=YP[,1]
if(M>1) y=apply(YP[,1:M],1,sum)
plot(df$x,df$y,ylab="",xlab="")
lines(df$x,y,type="l",col="red",lwd=3)
fit=lm(y~bs(x,degree=1,df=3),data=df)
yp=predict(fit,newdata=nd)
lines(nd$x,yp,type="l",col="blue",lwd=3)
lines(nd$x,sin(nd$x),lty=2)}

The red line is the initial guess we have, without boosting, using a simple call of the regression function. The blue one is the one obtained using boosting. The dotted line is the truemodel.

viz(50)

Somehow, boosting is working. But even the possibility to get different notes at each step, it looks like we don’t use it. And we cannot perform better than a simple regression function.

What if we use quadratic splines instead of linear splines?

v=.05
fit=lm(y~bs(x,degree=2,df=3),data=df)
yp=predict(fit,newdata=df)
df$yr=df$y - v*yp
YP=v*yp
library(splines)
for(t in 1:100){
fit=lm(yr~bs(x,degree=2,df=3),data=df)
yp=predict(fit,newdata=df)
df$yr=df$yr - v*yp
YP=cbind(YP,v*yp)
}

Again, boosting is not improving anything here. We’ll discuss later on the impact of the shrinkage parameter, but here, it won’t change much the output (it might be faster of slower to reach the final prediction, but it will always be the same predictive model).

In order to get something different at each step, it tried to add a boostrap procedure. I don’t know if that’s sill ‘boosting’, but why not try it.

v=.1
idx=sample(1:n,size=n,replace=TRUE)
fit=lm(y~bs(x,degree=1,df=3),data=df[idx,])
yp=predict(fit,newdata=df)
df$yr=df$y - v*yp
YP=v*yp
 
for(t in 1:100){
idx=sample(1:n,size=n,replace=TRUE)
fit=lm(yr~bs(x,degree=1,df=3),data=df[idx,])
yp=predict(fit,newdata=df)
df$yr=df$yr - v*yp
YP=cbind(YP,v*yp)
}

At each step, I sample from my dataset, and get a linear-by-parts regression. And again, I use a shrinkage parameter not to learn too fast.

It is slightly different (if you look very carefully). But actually, an algorithm that will be as costly is a ‘bagging’ one, where we boostrap many samples, get different models, and predictions, and then average all the predictions. The (computational) cost is exactly the same here

YP=NULL
library(splines)
for(t in 1:100){
idx=sample(1:n,size=n,replace=TRUE)
fit=lm(y~bs(x,degree=1,df=3),data=df[idx,])
yp=predict(fit,newdata=nd)
YP=cbind(YP,yp)
}
y=apply(YP[,1:100],1,mean)
plot(df$x,df$y,ylab="",xlab="")
lines(nd$x,y,type="l",col="purple",lwd=3)

It is very close to what we got with the boosting procedure.

Let us try something else. What if we consider at each step a regression tree, instead of a linear-by-parts regression.

library(rpart)
v=.1
fit=rpart(y~x,data=df)
yp=predict(fit)
df$yr=df$y - v*yp
YP=v*yp
for(t in 1:100){
fit=rpart(yr~x,data=df)
yp=predict(fit,newdata=df)
df$yr=df$yr - v*yp
YP=cbind(YP,v*yp)
}

Again, to visualise the learning process, use

viz=function(M){
y=apply(YP[,1:M],1,sum)
plot(df$x,df$y,ylab="",xlab="")
lines(df$x,y,type="s",col="red",lwd=3)
fit=rpart(y~x,data=df)
yp=predict(fit,newdata=nd)
lines(nd$x,yp,type="s",col="blue",lwd=3)
lines(nd$x,sin(nd$x),lty=2)}

This time, with those trees, it looks like not only we have a good model, but also a different model from the one we can get using a single regression tree.

What if we change the shrinkage parameter?

viz=function(v=0.05){
fit=rpart(y~x,data=df)
yp=predict(fit)
df$yr=df$y - v*yp
YP=v*yp
for(t in 1:100){
fit=rpart(yr~x,data=df)
yp=predict(fit,newdata=df)
df$yr=df$yr - v*yp
YP=cbind(YP,v*yp)
}
y=apply(YP,1,sum)
plot(df$x,df$y,xlab="",ylab="")
lines(df$x,y,type="s",col="red",lwd=3)
fit=rpart(y~x,data=df)
yp=predict(fit,newdata=nd)
lines(nd$x,yp,type="s",col="blue",lwd=3)
lines(nd$x,sin(nd$x),lty=2)
}

There is clearly an impact of that parameter. It has to be small to get a good model. This is the idea of using ‘weak learners’ to get a good prediction.

If we add a boostrap sample selection , we get also a good predictive model, here

v=.1
idx=sample(1:n,size=n,replace=TRUE)
fit=rpart(y~x,data=df[idx,])
yp=predict(fit,newdata=df)
df$yr=df$y - v*yp
YP=v*yp
for(t in 1:100){
idx=sample(1:n,size=n,replace=TRUE)
fit=rpart(yr~x,data=df[idx,])
yp=predict(fit,newdata=df)
df$yr=df$yr - v*yp
YP=cbind(YP,v*yp)
}

It looks like using a small shrinkage parameter, and some regression tree at each step, we get some ‘weak learners’. It performs well, but so far, I do not see how it could perform better than standard econometric models. But I am still working on it.

An Attempt to Understand Boosting Algorithm(s)的更多相关文章

  1. A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning

    A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning by Jason Brownlee on S ...

  2. How to Configure the Gradient Boosting Algorithm

    How to Configure the Gradient Boosting Algorithm by Jason Brownlee on September 12, 2016 in XGBoost ...

  3. 转:The Knuth-Morris-Pratt Algorithm in my own words

    The Knuth-Morris-Pratt Algorithm in my own words For the past few days, I’ve been reading various ex ...

  4. 机器学习技法:08 Adaptive Boosting

    Roadmap Motivation of Boosting Diversity by Re-weighting Adaptive Boosting Algorithm Adaptive Boosti ...

  5. Gradient Boosting, Decision Trees and XGBoost with CUDA ——GPU加速5-6倍

    xgboost的可以参考:https://xgboost.readthedocs.io/en/latest/gpu/index.html 整体看加速5-6倍的样子. Gradient Boosting ...

  6. 机器学习技法笔记:08 Adaptive Boosting

    Roadmap Motivation of Boosting Diversity by Re-weighting Adaptive Boosting Algorithm Adaptive Boosti ...

  7. Python中Gradient Boosting Machine(GBM)调参方法详解

    原文地址:Complete Guide to Parameter Tuning in Gradient Boosting (GBM) in Python by Aarshay Jain 原文翻译与校对 ...

  8. Tree - Gradient Boosting Machine with sklearn source code

    This is the second post in Boosting algorithm. In the previous post, we go through the earliest Boos ...

  9. The Knuth-Morris-Pratt Algorithm in my own words(转)

    origianl For the past few days, I’ve been reading various explanations of the Knuth-Morris-Pratt str ...

随机推荐

  1. (转)Google Fonts 的介绍与使用

    转载自“前端笔记”  http://www.cnblogs.com/milly/archive/2013/05/10/google-fonts.html Google Fonts 是什么?(以下翻译为 ...

  2. Handler具体解释系列(四)——利用Handler在主线程与子线程之间互发消息

    MainActivity例如以下: package cc.c; import android.app.Activity; import android.os.Bundle; import androi ...

  3. android 12 click事件的不同实现方式

    <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" android:layo ...

  4. RPM制作

    http://blog.csdn.net/justlinux2010/article/details/9905425

  5. RHCA-RH442-Linux系统性能调优 (学习)

    RHCA-RH442-Linux系统性能调优

  6. linux块设备IO栈浅析

    http://www.sysnote.org/2015/08/06/linux-io-stack/

  7. iOS NavigaitonController详解(code版)

    参考文章:http://blog.csdn.net/totogo2010/article/details/7681879,参考了这篇文章,写的超级好,自己他的基础上加上了自己的理解. 下面的图显示了导 ...

  8. Google代码实验室

    https://code.google.com/p/google-styleguide/

  9. img标签块状与内联的博弈

    新手,请前辈们不吝赐教 说到html中img标签是内联还是块状元素,我们首先要知道什么是内联(inline),什么又是块状(block)? 我也在网上查看了一些别人分享的经验,有一个讲到了文档流的概念 ...

  10. React组件的生命周期各环节运作流程

    'use strict'; React.createClass({ //1.创建阶段 getDefaultProps:function(){ //在创建类的时候被调用 console.log('get ...